Last updated on 2020-05-17 by Rob J Hyndman

Base R ships with a lot of functionality useful for time series, in particular in the stats package. This is complemented by many packages on CRAN, which are briefly summarized below. There is also a considerable overlap between the tools for time series and those in the Econometrics and Finance task views. The packages in this view can be roughly structured into the following topics. If you think that some package is missing from the list, please let us know.

**Basics**

*Infrastructure*: Base R contains substantial infrastructure for representing and analyzing time series data. The fundamental class is`"ts"`

that can represent regularly spaced time series (using numeric time stamps). Hence, it is particularly well-suited for annual, monthly, quarterly data, etc.*Rolling statistics*: Moving averages are computed by`ma`

from forecast, and`rollmean`

from zoo. The latter also provides a general function`rollapply`

, along with other specific rolling statistics functions. slider calculates a diverse and comprehensive set of type-stable running functions for any R data types. tsibble provides`slide()`

for rolling statistics,`tile()`

for non-overlapping sliding windows, and`stretch()`

for expanding windows. tbrf provides rolling functions based on date and time windows instead of n-lagged observations. roll provides parallel functions for computing rolling statistics. runner provides tools for running any R function in rolling windows or date windows. runstats provides fast computational methods for some running sample statistics. For data.table,`froll()`

can be used for high-performance rolling statistics.*Graphics*: Time series plots are obtained with`plot()`

applied to`ts`

objects. (Partial) autocorrelation functions plots are implemented in`acf()`

and`pacf()`

. Alternative versions are provided by`Acf()`

and`Pacf()`

in forecast, along with a combination display using`tsdisplay()`

. Seasonal displays are obtained using`monthplot()`

in stats and`seasonplot`

in forecast. feasts provides various time series graphics for tsibble objects including time plots, season plots, subseries plots, ACF and PACF plots, and some combination displays. SDD provides more general serial dependence diagrams, while dCovTS computes and plots the distance covariance and correlation functions of time series. tstools provides plotting tools designed for official statistics. ggseas provides additional ggplot2 graphics for seasonally adjusted series and rolling statistics. ggTimeSeries provides further visualizations including calendar heat maps, while calendar plots are implemented in sugrrants. gravitas allows for visualizing probability distributions conditional on bivariate temporal granularities. dygraphs provides an interface to the Dygraphs interactive time series charting library. TSstudio provides some interactive visualization tools for time series. ZRA plots forecast objects from the forecast package using dygraphs. Basic fan plots of forecast distributions are provided by forecast and vars. More flexible fan plots of any sequential distributions are implemented in fanplot.

**Times and Dates**

- Class
`"ts"`

can only deal with numeric time stamps, but many more classes are available for storing time/date information and computing with it. For an overview see*R Help Desk: Date and Time Classes in R*by Gabor Grothendieck and Thomas Petzoldt in R News 4(1), 29-32. - Classes
`"yearmon"`

and`"yearqtr"`

from zoo allow for more convenient computation with monthly and quarterly observations, respectively. - Class
`"Date"`

from the base package is the basic class for dealing with dates in daily data. The dates are internally stored as the number of days since 1970-01-01. - The chron package
provides classes for
`dates()`

,`hours()`

and date/time (intra-day) in`chron()`

. There is no support for time zones and daylight savings time. Internally,`"chron"`

objects are (fractional) days since 1970-01-01. - Classes
`"POSIXct"`

and`"POSIXlt"`

implement the POSIX standard for date/time (intra-day) information and also support time zones and daylight savings time. However, the time zone computations require some care and might be system-dependent. Internally,`"POSIXct"`

objects are the number of seconds since 1970-01-01 00:00:00 GMT. Package lubridate provides functions that facilitate certain POSIX-based computations. timechange allows for efficient manipulation of date-times accounting for time zones and daylight saving times. wktmo converts weekly data to monthly data in several different ways. - Class
`"timeDate"`

is provided in the timeDate package (previously: fCalendar). It is aimed at financial time/date information and deals with time zones and daylight savings times via a new concept of "financial centers". Internally, it stores all information in`"POSIXct"`

and does all computations in GMT only. Calendar functionality, e.g., including information about weekends and holidays for various stock exchanges, is also included. - The tis package
provides the
`"ti"`

class for time/date information. - The
`"mondate"`

class from the mondate package facilitates computing with dates in terms of months. - The tempdisagg package includes methods for temporal disaggregation and interpolation of a low frequency time series to a higher frequency series.
- Time series disaggregation is also provided by tsdisagg2.
- TimeProjection extracts useful time components of a date object, such as day of week, weekend, holiday, day of month, etc, and put it in a data frame.

**Time Series Classes**

- As mentioned above,
`"ts"`

is the basic class for regularly spaced time series using numeric time stamps. - The zoo package
provides infrastructure for regularly and irregularly spaced time series using arbitrary classes for the time stamps (i.e., allowing all classes from the previous section).
It is designed to be as consistent as possible with
`"ts"`

. Coercion from and to`"zoo"`

is available for all other classes mentioned in this section. - The package xts is based on zoo and provides uniform handling of R's different time-based data classes.
- Several packages aim to handle time-based tibbles: tsibble provides tidy temporal data frames and associated tools; timetk contains tools for working with and coercing between time-based tibbles, xts, zoo and ts objects. tsbox is another toolkit for converting between various time series data classes.
- Some manipulation tools for time series are available in data.table including
`shift()`

for lead/lag operations. - Various packages implement irregular time series
based on
`"POSIXct"`

time stamps, intended especially for financial applications. These include`"irts"`

from tseries, and`"fts"`

from fts. - The class
`"timeSeries"`

in timeSeries (previously: fSeries) implements time series with`"timeDate"`

time stamps. - The class
`"tis"`

in tis implements time series with`"ti"`

time stamps. - The package tframe contains infrastructure for setting time frames in different formats.
- timeseriesdb manages time series for official statistics by mapping
`ts`

objects to PostgreSQL relations.

**Forecasting and Univariate Modeling**

- The fable package provies tools for fitting univariate time series models to many series simultaneously including ETS, ARIMA, TSLM and other models. It also provides many functions for computing and analysing forecasts. The time series must be in the
`tsibble`

format. - The forecast package provides similar tools for
`ts`

objects. *Exponential smoothing*:`HoltWinters()`

in stats provides some basic models with partial optimization,`ETS()`

from fable and`ets()`

from forecast provide a larger set of models and facilities with full optimization. robets provides a robust alternative to the`ets()`

function. smooth implements some generalizations of exponential smoothing. The MAPA package combines exponential smoothing models at different levels of temporal aggregation to improve forecast accuracy. Some Bayesian extensions of exponential smoothing are contained in Rlgt.- prophet forecasts time series based on an additive model where nonlinear trends are fit with yearly and weekly seasonality, plus holidays. It works best with daily data.
- The theta method
is implemented in the
`THETA()`

function from fable and`thetaf()`

function from forecast. An alternative and extended implementation is provided in forecTheta. *Autoregressive models*:`ar()`

in stats (with model selection) and FitAR for subset AR models.*ARIMA models*:`arima()`

in stats is the basic function for ARIMA, SARIMA, ARIMAX, and subset ARIMA models. It is enhanced in the fable package via the`ARIMA()`

function which allows for automatic modelling. Similar functionality is provided in the forecast package via the`auto.arima()`

function.`arma()`

in the tseries package provides different algorithms for ARMA and subset ARMA models. Other estimation methods including the innovations algorithm are provided by itsmr. FitARMA implements a fast MLE algorithm for ARMA models. Package gsarima contains functionality for Generalized SARIMA time series simulation. Robust ARIMA modeling is provided in the robustarima package. The mar1s package handles multiplicative AR(1) with seasonal processes. TSTutorial provides an interactive tutorial for Box-Jenkins modelling. Improved prediction intervals for ARIMA and structural time series models are provided by tsPI.*Periodic ARMA models*: pear and partsm for periodic autoregressive time series models, and perARMA and pcts for periodic ARMA modelling and other procedures for periodic time series analysis.*ARFIMA models*: Some facilities for fractional differenced ARFIMA models are provided in the fracdiff package. The arfima package has more advanced and general facilities for ARFIMA and ARIMA models, including dynamic regression (transfer function) models. Additional methods for fitting and simulating non-stationary ARFIMA models are in nsarfima. LongMemoryTS provides a collection of functions for analysing long memory time series.*Transfer function*models are provided by the the`arfima`

function in the arfima package.*Structural models*are implemented in`StructTS()`

in stats, and in stsm and stsm.class. KFKSDS provides a naive implementation of the Kalman filter and smoothers for univariate state space models. Bayesian structural time series models are implemented in bsts- Non-Gaussian time series can be handled with GLARMA state space models via glarma. Conditional Auto-Regression models using Monte Carlo Likelihood methods are implemented in mclcar. Efficient Bayesian inference for nonlinear and non-Gaussian state space models is provided in bssm. Non-Gaussian state space models with exact marginal likelihood are given by NGSSEML.
*GARCH models*:`garch()`

from tseries fits basic GARCH models. Many variations on GARCH models are provided by rugarch. Other univariate GARCH packages include fGarch which implements ARIMA models with a wide class of GARCH innovations. There are many more GARCH packages described in the Finance task view.*Stochastic volatility*models are handled by stochvol in a Bayesian framework.*Count time series*models are handled in the tscount and acp packages. ZIM provides for Zero-Inflated Models for count time series. tsintermittent implements various models for analysing and forecasting intermittent demand time series.*Censored time series*can be modelled using cents and carx. ARCensReg fits univariate censored regression models with autoregressive errors.*Portmanteau tests*are provided via`Box.test()`

in the stats package. Additional tests are given by WeightedPortTest.- Outlier detection
following the Chen-Liu approach is provided by tsoutliers.
The
`tsoutliers`

and`tsclean`

functions in the forecast package provide some simple heuristic methods for identifying and correcting outliers. anomalize provides some additional outlier detection methods in a tidy data framework. otsad implements a set of online anomaly detectors for time series. *Change point detection*is provided in strucchange (using linear regression models), and in trend (using nonparametric tests). The changepoint package provides many popular changepoint methods, and ecp does nonparametric changepoint detection for univariate and multivariate series. changepoint.np implements the nonparametric PELT algorithm, while changepoint.mv detects changepoints in multivariate time series. InspectChangepoint uses sparse projection to estimate changepoints in high-dimensional time series. robcp provides robust change-point detection using Huberized cusum tests, and Rbeast provides Bayesian change-point detection and time series decomposition.- Tests for possibly non-monotonic trends are provided by funtimes.
*Time series imputation*is provided by the imputeTS package. Some more limited facilities are available using`na.interp()`

from the forecast package. imputeTestbench provides tools for testing and comparing imputation methods. mtsdi implements an EM algorithm for imputing missing values in multivariate normal time series, accounting for spatial and temporal correlations.- The seer package implements a framework for feature-based forecast model selection.
- Forecasts can be combined in the fable package using simple linear expressions. ForecastComb supports many forecast combination methods including simple, geometric and regression-based combinations. forecastHybrid provides functions for ensemble forecasts, combining approaches from the forecast package. mafs fits several forecast models and selects the best one according to an error metric.
- Forecast evaluation
is provided in the
`accuracy()`

function from the fable and forecast packages. Distributional forecast evaluation using scoring rules is available in scoringRules. The Diebold-Mariano test for comparing the forecast accuracy of two models is implemented in the`dm.test()`

function in forecast. A multivariate version of the Diebold-Mariano test is provided by multDM. - Tidy tools for forecasting are provided by sweep, converting objects produced in forecast to "tidy" data frames.
- Multi-step-ahead direct forecasting with several machine learning approaches are provided in forecastML.
*Miscellaneous*: ltsa contains methods for linear time series analysis, timsac for time series analysis and control.

**Frequency analysis**

*Spectral density estimation*is provided by`spectrum()`

in the stats package, including the periodogram, smoothed periodogram and AR estimates. Bayesian spectral inference is provided by bspec and regspec. The Lomb-Scargle periodogram for unevenly sampled time series is computed by lomb. spectral uses Fourier and Hilbert transforms for spectral filtering. psd produces adaptive, sine-multitaper spectral density estimates. kza provides Kolmogorov-Zurbenko Adaptive Filters including break detection, spectral analysis, wavelets and KZ Fourier Transforms. multitaper also provides some multitaper spectral analysis tools.*Wavelet methods*: The wavelets package includes computing wavelet filters, wavelet transforms and multiresolution analyses. Wavelet methods for time series analysis based on Percival and Walden (2000) are given in wmtsa. WaveletComp provides some tools for wavelet-based analysis of univariate and bivariate time series including cross-wavelets, phase-difference and significance tests. biwavelet is a port of the WTC Matlab package for univariate and bivariate wavelet analyses. Multivariate, locally stationary wavelet analysis tools are provided by mvLSW. Tests of white noise using wavelets are provided by hwwntest. Wavelet scalogram tools are contained in wavScalogram. Further wavelet methods can be found in the packages brainwaver, rwt, waveslim, wavethresh.*Harmonic regression*using Fourier terms is implemented in HarmonicRegression. The fable and forecast packages also provide some simple harmonic regression facilities via the`fourier`

function.

**Decomposition and Filtering**

*Filters and smoothing*:`filter()`

in stats provides autoregressive and moving average linear filtering of multiple univariate time series. The robfilter package provides several robust time series filters.`smooth()`

from the stats package computes Tukey's running median smoothers, 3RS3R, 3RSS, 3R, etc. sleekts computes the 4253H twice smoothing method. mFilter implements several filters for smoothing and extracting trend and cyclical components including Hodrick-Prescott and Butterworth filters. smoots provides nonparametric estimation of the time trend and its derivatives.*Decomposition*: Seasonal decomposition is discussed below. Autoregressive-based decomposition is provided by ArDec. tsdecomp implements ARIMA-based decomposition of quarterly and monthly data. rmaf uses a refined moving average filter for decomposition.*Singular Spectrum Analysis*is implemented in Rssa, ASSA and spectral.methods.*Empirical Mode Decomposition*(EMD) and Hilbert spectral analysis is provided by EMD. Additional tools, including ensemble EMD, are available in hht. An alternative implementation of ensemble EMD and its complete variant are available in Rlibeemd.

**Seasonality**

*Seasonal decomposition*: the stats package provides classical decomposition in`decompose()`

, and STL decomposition in`stl()`

. Enhanced STL decomposition is available in stlplus. stR provides Seasonal-Trend decomposition based on Regression.- X-13-ARIMA-SEATS binaries are provided in the x13binary package, with seasonal providing an R interface and seasonalview providing a GUI. An alternative interface is provided by x12, with an associated alternative GUI provided by x12GUI.
- An interface to the JDemetra+ seasonal adjustment software is provided by RJDemetra. ggdemetra provides associated ggplot2 functions.
- Seasonal adjustment of daily time series, allowing for day-of-week, time-of-month, time-of-year and holiday effects is provided by dsa.
*Analysis of seasonality*: the bfast package provides methods for detecting and characterizing abrupt changes within the trend and seasonal components obtained from a decomposition. npst provides a generalization of Hewitt's seasonality test.- season: Seasonal analysis of health data including regression models, time-stratified case-crossover, plotting functions and residual checks.
- seas: Seasonal analysis and graphics, especially for climatology.
- deseasonalize: Optimal deseasonalization for geophysical time series using AR fitting.
- sazedR: Method to estimate the period of a seasonal time series.

**Stationarity, Unit Roots, and Cointegration**

*Stationarity and unit roots*: tseries provides various stationarity and unit root tests including Augmented Dickey-Fuller, Phillips-Perron, and KPSS. Alternative implementations of the ADF and KPSS tests are in the urca package, which also includes further methods such as Elliott-Rothenberg-Stock, Schmidt-Phillips and Zivot-Andrews tests. uroot provides seasonal unit root tests. CADFtest provides implementations of both the standard ADF and a covariate-augmented ADF (CADF) test. MultipleBubbles tests for the existence of bubbles based on Phillips-Shi-Yu (2015).*Local stationarity*: locits provides a test of local stationarity and computes the localized autocovariance. Time series costationarity determination is provided by costat. Locally stationary wavelet models for nonstationary time series are implemented in wavethresh (including estimation, plotting, and simulation functionality for time-varying spectra).*Cointegration*: The Engle-Granger two-step method with the Phillips-Ouliaris cointegration test is implemented in tseries and urca. The latter additionally contains functionality for the Johansen trace and lambda-max tests. tsDyn provides Johansen's test and AIC/BIC simultaneous rank-lag selection. CommonTrend provides tools to extract and plot common trends from a cointegration system. Parameter estimation and inference in a cointegrating regression are implemented in cointReg. nardl estimates nonlinear cointegrating autoregressive distributed lag models.

**Nonlinear Time Series Analysis**

*Nonlinear autoregression*: Tools for nonlinear time series analysis are provided in NTS including threshold autoregressive models, Markov-switching models, convolutional functional autoregressive models, and nonlinearity tests. Various forms of nonlinear autoregression are available in tsDyn including additive AR, neural nets, SETAR and LSTAR models, threshold VAR and VECM. Neural network autoregression is also provided in GMDH. nnfor provides time series forecasting with neural networks. NlinTS includes neural network VAR, and a nonlinear version of the Granger causality test based on feedforward neural networks. bentcableAR implements Bent-Cable autoregression. BAYSTAR provides Bayesian analysis of threshold autoregressive models.- tseriesChaos
provides an R implementation of the algorithms from the
*TISEAN project*. DChaos provides several algorithms for detecting chaotic signals inside univariate time series. - Autoregression Markov switching models are provided in MSwM, while dependent mixtures of latent Markov models are given in depmix and depmixS4 for categorical and continuous time series.
*Tests*: Various tests for nonlinearity are provided in fNonlinear. tseriesEntropy tests for nonlinear serial dependence based on entropy metrics.- Additional functions for nonlinear time series are available in nlts and nonlinearTseries.
- Fractal time series modeling and analysis is provided by fractal.

**Entropy**

- Shannon entropy based on the spectral density is computed using ForeCA.
- RTransferEntropy measures information flow between time series with Shannon and Renyi transfer entropy.
- An entropy measure based on the Bhattacharya-Hellinger-Matusita distance is implemented in tseriesEntropy.
- Various approximate and sample entropies are computed using TSEntropies.

**Dynamic Regression Models**

*Dynamic linear models*: A convenient interface for fitting dynamic regression models via OLS is available in dynlm; an enhanced approach that also works with other regression functions and more time series classes is implemented in dyn. More advanced dynamic system equations can be fitted using dse. Gaussian linear state space models can be fitted using dlm (via maximum likelihood, Kalman filtering/smoothing and Bayesian methods), or using bsts which uses MCMC. dLagM provides time series regression with distributed lags. Functions for distributed lag nonlinear modelling are provided in dlnm. sym.arma will fit ARMA models with regressors where the observations follow a conditional symmetric distribution.*Time-varying parameter*models can be fitted using the tpr package.

**Multivariate Time Series Models**

*Vector autoregressive (VAR) models*are provided via`ar()`

in the basic stats package including order selection via the AIC. These models are restricted to be stationary. MTS is an all-purpose toolkit for analyzing multivariate time series including VAR, VARMA, seasonal VARMA, VAR models with exogenous variables, multivariate regression with time series errors, and much more. Possibly non-stationary VAR models are fitted in the mAr package, which also allows VAR models in principal component space. sparsevar allows estimation of sparse VAR and VECM models, bigtime estimates large sparse VAR, VARX and VARMA models, while BigVAR estimates VAR and VARX models with structured lasso penalties and svars implements data-driven structural VARs. Shrinkage estimation methods for VARs are implemented in VARshrink. More elaborate models are provided in package vars, tsDyn,`estVARXls()`

in dse. Another implementation with bootstrapped prediction intervals is given in VAR.etp. bvartools assists in the set-up of Bayesian VAR models, while BVAR provides a toolkit for hierarchical Bayesian VAR models. mlVAR provides multi-level vector autoregression. VARsignR provides routines for identifying structural shocks in VAR models using sign restrictions. gmvarkit estimates Gaussian mixture VAR models. GNAR provides methods for fitting network AR models, while graphicalVAR estimates graphical VAR models. gdpc implements generalized dynamic principal components. pcdpca extends dynamic principal components to periodically correlated multivariate time series. onlineVAR implements online fitting of time-adaptive lasso VARs. mgm estimates time-varying mixed graphical models and mixed VAR models via regularized regression.*VARIMA models*and*state space models*are provided in the dse package. EvalEst facilitates Monte Carlo experiments to evaluate the associated estimation methods.*Vector error correction models*are available via the urca, ecm, vars, tsDyn packages, including versions with structural constraints and thresholding.*Time series component analysis*: Time series factor analysis is provided in tsfa. ForeCA implements forecastable component analysis by searching for the best linear transformations that make a multivariate time series as forecastable as possible. PCA4TS finds a linear transformation of a multivariate time series giving lower-dimensional subseries that are uncorrelated with each other. One-sided dynamic principal components are computed in odpc. Frequency-domain-based dynamic PCA is implemented in freqdom.*Multivariate state space models*An implementation is provided by the KFAS package which provides a fast multivariate Kalman filter, smoother, simulation smoother and forecasting. FKF provides a fast and flexible implementation of the Kalman filter, which can deal with missing values. Yet another implementation is given in the dlm package which also contains tools for converting other multivariate models into state space form. MARSS fits constrained and unconstrained multivariate autoregressive state-space models using an EM algorithm. mbsts provides tools for multivariate Bayesian structural time series models. All of these packages assume the observational and state error terms are uncorrelated.*Partially-observed Markov processes*are a generalization of the usual linear multivariate state space models, allowing non-Gaussian and nonlinear models. These are implemented in the pomp package.- Multivariate stochastic volatility models (using latent factors) are provided by factorstochvol.

**Analysis of large groups of time series**

*Time series features*are computed in feasts for time series in`tsibble`

format. They are computed using tsfeatures for a list or matrix of time series in`ts`

format. In both packages, many built-in feature functions are included, and users can add their own.*Time series clustering*is implemented in TSclust, dtwclust, BNPTSclust and pdc.- TSdist provides distance measures for time series data.
- TSrepr includes methods for representing time series using dimension reduction and feature extraction.
- rucrdtw provides R bindings for functions from the UCR Suite to enable ultrafast subsequence search for a best match under Dynamic Time Warping and Euclidean Distance. IncDTW provides incremental calculation of dynamic time warping for streaming time series.
- Methods for plotting and forecasting collections of hierarchical and grouped time series are provided by hts. thief uses hierarchical methods to reconcile forecasts of temporally aggregated time series. An alternative approach to reconciling forecasts of hierarchical time series is provided by gtop. thief

**Functional time series**

- Tools for visualizing, modeling, forecasting and analysing functional time series are implemented in ftsa.
- fdaACF estimates the autocorrelation function for functional time series.
- freqdom.fda provides implements of dynamical functional principal components for functional time series.
- wwntests provides an array of white noise hypothesis tests for functional data.

**Continuous time models**

- Sim.DiffProc simulates and models stochastic differential equations.
- Simulation and inference for stochastic differential equations is provided by sde and yuima.

**Resampling**

*Bootstrapping*: The boot package provides function`tsboot()`

for time series bootstrapping, including block bootstrap with several variants.`tsbootstrap()`

from tseries provides fast stationary and block bootstrapping. Maximum entropy bootstrap for time series is available in meboot. timesboot computes the bootstrap CI for the sample ACF and periodogram. BootPR computes bias-corrected forecasting and bootstrap prediction intervals for autoregressive time series.

**Time Series Data**

- Data from Hyndman and Athanasopoulos (2018, 2nd ed)
*Forecasting: principles and practice*are in the fpp2 package. - Data from Hyndman and Athanasopoulos (2020, 3rd ed)
*Forecasting: principles and practice*are in the fpp3 package. - Data from Hyndman, Koehler, Ord and Snyder (2008)
*Forecasting with exponential smoothing*are in the expsmooth package. - Data from Makridakis, Wheelwright and Hyndman (1998, 3rd ed)
*Forecasting: methods and applications*are in the fma package. - Data from Shumway and Stoffer (2017, 4th ed)
*Time Series Analysis and Its Applications: With R Examples*are in the astsa package. - Data from Tsay (2005, 2nd ed)
*Analysis of Financial Time Series*are in the FinTS package. - Data from Woodward, Gray, and Elliott (2016, 2nd ed)
*Applied Time Series Analysis with R*are in the tswge package. - AER and Ecdat both contain many data sets (including time series data) from many econometrics text books
- Data from the M-competition and M3-competition are provided in the Mcomp package. Tcomp provides data from the 2010 IJF Tourism Forecasting Competition.
- BETS provides access to the most important economic time series in Brazil.
- bundesbank allows access to the time series databases of the German central bank.
- Data from Switzerland via dataseries.org can be downloaded and imported using dataseries.
- fame provides an interface for FAME time series databases
- influxdbr provides an interface to the InfluxDB time series database.
- pdfetch provides facilities for downloading economic and financial time series from public sources.
- Data from the Quandl online portal to financial, economical and social datasets can be queried interactively using the Quandl package.
- TSdbi provides a common interface to time series databases.
- Various data sets in tsibble format are provided by tsibbledata.

**Miscellaneous**

- dtw: Dynamic time warping algorithms for computing and plotting pairwise alignments between time series.
- ensembleBMA: Bayesian Model Averaging to create probabilistic forecasts from ensemble forecasts and weather observations.
- earlywarnings: Early warnings signals toolbox for detecting critical transitions in time series
- events: turns machine-extracted event data into regular aggregated multivariate time series.
- FeedbackTS: Analysis of fragmented time directionality to investigate feedback in time series.
- imputePSF: imputes missing data using pattern sequences.
- LPStimeSeries aims to find "learned pattern similarity" for time series.
- nets: routines for the estimation of sparse long run partial correlation networks for time series data.
- paleoTS: Modeling evolution in paleontological time series.
- pastecs: Regulation, decomposition and analysis of space-time series.
- PSF: Forecasting univariate time series using pattern-sequences.
- ptw: Parametric time warping.
- RGENERATE provides tools to generate vector time series.
- RMAWGEN is set of S3 and S4 functions for spatial multi-site stochastic generation of daily time-series of temperature and precipitation making use of VAR models. The package can be used in climatology and statistical hydrology.
- RSEIS: Seismic time series analysis tools.
- rts: Raster time series analysis (e.g., time series of satellite images).
- spTimer: Spatio-temporal Bayesian modelling.
- surveillance: Temporal and spatio-temporal modeling and monitoring of epidemic phenomena.
- Tides: Functions to calculate characteristics of quasi periodic time series, e.g. observed estuarine water levels.
- tiger: Temporally resolved groups of typical differences (errors) between two time series are determined and visualized.
- tsfknn: Time series forecasting with k-nearest-neighbours.
- TSMining: Mining Univariate and Multivariate Motifs in Time-Series Data.
- tsModel: Time series modeling for air pollution and health.

- Task view: Finance
- Task view: Econometrics
- Task view: Environmetrics
- TISEAN Project
- GitHub repository for this Task View

4 years ago by Fernanda L. Schumacher

Fitting Univariate Censored Linear Regression Model with Autoregressive Errors

2 years ago by JQ Veenstra

Fractional ARIMA (and Other Long Memory) Time Series Modeling

7 years ago by Edward M.H. Lin

On Bayesian analysis of Threshold autoregressive model (BAYSTAR)

5 years ago by Grace Chiu

Bent-Cable Regression for Independent Data or Autoregressive Time Series

6 months ago by Will Nicholson

Dimension Reduction Methods for Multivariate Time Series

10 months ago by Tarik C. Gouhier

Conduct Univariate and Bivariate Wavelet Analyses

10 months ago by David Alejandro Martell Juarez

A Bayesian Nonparametric Algorithm for Time Series Clustering

6 years ago by Jae H. Kim

Bootstrap Prediction Intervals and Bias-Corrected Forecasting

8 years ago by Sophie Achard

Basic wavelet analysis of multivariate time series with a visualisation and parametrisation using graph theory.

3 months ago by Jouni Helske

Bayesian Inference of Non-Linear and Non-Gaussian State Space Models

3 years ago by Claudio Lupi

A Package to Perform Covariate Augmented Dickey-Fuller Unit Root Tests

2 years ago by Daniel Grose

Changepoint Analysis for Multivariate Time Series

4 years ago by Philipp Aschersleben

Parameter Estimation and Inference in a Cointegrating Regression

7 years ago by Fan Yang

Extract and plot common trends from a cointegration system. Calculate P-value for Johansen Statistics.

4 years ago by Maria Pitsillou

Distance Covariance and Correlation for Time Series Analysis

5 months ago by Ingmar Visser

Dependent Mixture Models - Hidden Markov Models of GLMs and Other Distributions in S4

7 years ago by A. I. McLeod

Optimal deseasonalization for geophysical time series using AR fitting

a month ago by Haydar Demirhan

Time Series Regression Models with Distributed Lag Models

2 years ago by Giovanni Petris

Bayesian and Likelihood Analysis of Dynamic Linear Models

6 months ago by Alexis Sarda

Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance

2 years ago by Petr Shevtsov

Interface to 'Dygraphs' Interactive Time Series Charting Library

6 years ago by Vasilis Dakos

Early Warning Signals Toolbox for Detecting Critical Transitions in Timeseries

7 months ago by Wenyu Zhang

Non-Parametric Multiple Change-Point Analysis of Multivariate Data

2 years ago by Chris Fraley

Probabilistic Forecasting using Ensembles and Bayesian Model Averaging

5 years ago by Rob J Hyndman

Data Sets from "Forecasting with Exponential Smoothing"

8 months ago by Gregor Kastner

Bayesian Estimation of (Sparse) Latent Factor Stochastic Volatility Models

6 months ago by Guy J. Abel

Visualisation of Sequential Probability Distributions Using Fan Charts

4 months ago by Guillermo Mestre Marcos

Autocorrelation Function for Functional Time Series

3 months ago by Mitchell O'Hara-Wild

Feature Extraction and Statistics for Time Series

3 months ago by Tobias Setz

Rmetrics - Autoregressive Conditional Heteroskedastic Modelling

a year ago by Georgi N. Boshnakov

Companion to Tsay (2005) Analysis of Financial Time Series

5 months ago by Rob Hyndman

Data Sets from "Forecasting: Methods and Applications" by Makridakis, Wheelwright & Hyndman (1998)

3 years ago by Tobias Setz

Rmetrics - Nonlinear and Chaotic Time Series Modelling

2 months ago by David Shaub

Convenient Functions for Ensemble Time Series Forecasts

a month ago by Nickalus Redell

Time Series Forecasting with Machine Learning Methods

3 months ago by Rob Hyndman

Data for "Forecasting: Principles and Practice" (3rd Edition)

4 months ago by Martin Maechler

Fractionally Differenced ARIMA aka ARFIMA(P,d,q) Models

2 years ago by William Constantine

A Fractal Time Series Modeling and Analysis Package

3 years ago by Kidzinski L.

Functional Time Series: Dynamic Functional Principal Components

9 months ago by Alain Quartier-la-Tente

'ggplot2' Extension for Seasonal and Trading Day Adjustment with 'RJDemetra'

2 years ago by Aditya Kothari

Time Series Visualisations Using the Grammar of Graphics

2 years ago by William T.M. Dunsmuir

Generalized Linear Autoregressive Moving Average Models

3 months ago by Savi Virolainen

Estimate Gaussian Mixture Vector Autoregressive Model

4 months ago by Sayani Gupta

Explore Probability Distributions for Bivariate Temporal Granularities

7 years ago by Olivier Briet

Two functions for Generalized SARIMA time series simulation

5 years ago by Paal O. Westermark

Harmonic Regression to One or more Time Series

4 years ago by Neeraj Bokde

Impute Missing Data in Time Series Data with PSF Based Method

a year ago by Marcus W. Beck

Test Bench for the Comparison of Imputation Methods

2 months ago by Maximilian Leodolter

Incremental Calculation of Dynamic Time Warping

5 months ago by Tengyao Wang

High-Dimensional Changepoint Estimation via Sparse Projection

a year ago by Jouni Helske

Kalman Filter and Smoother for Exponential Family State Space Models

5 years ago by Javier López-de-Lacalle

Kalman Filter, Smoother and Disturbance Smoother

5 years ago by Mustafa Gokce Baydogan

Learned Pattern Similarity and Representation for Time Series

4 months ago by Elizabeth Holmes - NOAA Federal

Multivariate Autoregressive State-Space Modeling

2 years ago by Ruey S. Tsay

All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models

2 years ago by Pedro Araujo

Test and Detection of Explosive Behaviors for Time Series

10 months ago by Simon Taylor

Multivariate, Locally Stationary Wavelet Process Estimation

2 years ago by Taha Zaghdoudi

Nonlinear Cointegrating Autoregressive Distributed Lag Model

5 months ago by T. R. dos Santos

Non-Gaussian State-Space with Exact Marginal Likelihood

5 months ago by Youssef Hmamouche

Models for Non Linear Causality Detection in Time Series

9 months ago by Benjamin Groebe

Methods for Fitting and Simulating Non-Stationary ARFIMA Models

a year ago by Jakob Messner

Online Fitting of Time-Adaptive Lasso Vector Auto Regression

2 years ago by Philippe Grosjean

Package for Analysis of Space-Time Ecological Series

3 years ago by Lukasz Kidzinski

Dynamic Principal Components for Periodically Correlated Functional Time Series

4 months ago by Georgi N. Boshnakov

Periodically Correlated and Periodically Integrated Time Series

10 months ago by Abiel Reinhart

Fetch Economic and Financial Time Series Data from Public Sources

2 months ago by Aaron A. King

Statistical Inference for Partially Observed Markov Processes

a year ago by Andrew J. Barbour

Adaptive, Sine-Multitaper Power Spectral Density Estimation

3 years ago by Neeraj Bokde

Forecasting of Univariate Time Series Using the Pattern Sequence-Based Forecasting (PSF) Algorithm

7 months ago by Kaiguang Zhao

Bayesian Change-Point Detection and Time Series Decomposition

4 years ago by Ben Powell

Non-Parametric Bayesian Spectrum Estimation for Multirate Data

3 months ago by Alain Quartier-la-Tente

Interface to 'JDemetra+' Seasonal Adjustment Software

a year ago by Christoph Bergmeir

Bayesian Exponential Smoothing Models with Trend Modifications

a year ago by Jouni Helske

Ensemble Empirical Mode Decomposition (EEMD) and Its Complete Variant (CEEMDAN)

3 months ago by Anton Korobeynikov

A Collection of Methods for Singular Spectrum Analysis

10 months ago by Simon Behrendt

Measuring Information Flow Between Time Series with Shannon and Renyi Transfer Entropy

9 months ago by Tiago Santos

Parameter-Free Domain-Agnostic Season Length Detection in Time Series

10 months ago by Fabian Krueger

Scoring Rules for Parametric and Simulated Distribution Forecasts

4 years ago by Stefano Maria Iacus

Simulation and Inference for Stochastic Differential Equations

6 months ago by Dominik Schulz

Nonparametric Estimation of the Trend and Its Derivatives in TS

5 years ago by Jannis v. Buttlar

Singular Spectrum Analysis (SSA) Tools for Time Series Analysis

a year ago by Darjus Hosszejni

Efficient Bayesian Inference for Stochastic Volatility (SV) Models

8 months ago by Achim Zeileis

Testing, Monitoring, and Dating Structural Changes

6 years ago by Javier López-de-Lacalle

Class and Methods for Structural Time Series Models

3 months ago by Sebastian Meyer

Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena

2 years ago by Vinicius Quintas Souto Maior

Autoregressive and Moving Average Symmetric Models

4 months ago by Christoph Sax

Methods for Temporal Disaggregation and Interpolation of Time Series

2 years ago by 'Matthias Bannert'

Manage Time Series for Official Statistics with R and PostgreSQL

5 months ago by Thorsten Pohlert

Non-Parametric Trend Tests and Change-Point Detection

3 years ago by Simone Giannerini

Entropy Based Analysis and Tests for Time Series

6 months ago by Jouni Helske

Improved Prediction Intervals for ARIMA Processes and Structural Time Series

6 years ago by Alberto Lopez Moreno

Fitting and Predict Time Series Interactive Laboratory

8 months ago by Namgil Lee

Shrinkage Estimation Methods for Vector Autoregressive Models

4 years ago by Christian Danne

Sign Restrictions, Bayesian, Vector Autoregression Models

4 months ago by Eric Aldrich

Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses

3 months ago by Brandon Whitcher

Basic Wavelet Routines for One-, Two-, and Three-Dimensional Signal Processing

a year ago by Vicente J. Bolos

Wavelet Scalogram Tools for Time Series Analysis

8 years ago by Thomas J. Fisher

Weighted Portmanteau Tests for Time Series Goodness-of-fit

3 years ago by Alexander Kowarik

Interface to 'X12-ARIMA'/'X13-ARIMA-SEATS' and Structure for Batch Processing of Seasonal Adjustment

a year ago by Dirk Eddelbuettel

Provide the 'x13ashtml' Seasonal Adjustment Binary

a month ago by Achim Zeileis

S3 Infrastructure for Regular and Irregular Time Series (Z's Ordered Observations)