Found 10000 packages in 0.05 seconds
Header-Only C++ Mathematical Optimization Library for 'Armadillo'
'Ensmallen' is a templated C++ mathematical optimization library (by the 'MLPACK' team) that provides a simple set of abstractions for writing an objective function to optimize. Provided within are various standard and cutting-edge optimizers that include full-batch gradient descent techniques, small-batch techniques, gradient-free optimizers, and constrained optimization. The 'RcppEnsmallen' package includes the header files from the 'Ensmallen' library and pairs the appropriate header files from 'armadillo' through the 'RcppArmadillo' package. Therefore, users do not need to install 'Ensmallen' nor 'Armadillo' to use 'RcppEnsmallen'. Note that 'Ensmallen' is licensed under 3-Clause BSD, 'Armadillo' starting from 7.800.0 is licensed under Apache License 2, 'RcppArmadillo' (the 'Rcpp' bindings/bridge to 'Armadillo') is licensed under the GNU GPL version 2 or later. Thus, 'RcppEnsmallen' is also licensed under similar terms. Note that 'Ensmallen' requires a compiler that supports 'C++14' and 'Armadillo' 10.8.2 or later.
Space-Filling Random and Quasi-Random Sequences
Generates random and quasi-random space-filling sequences. Supports the following sequences: 'Halton', 'Sobol', 'Owen'-scrambled 'Sobol', 'Owen'-scrambled 'Sobol' with errors distributed as blue noise, progressive jittered, progressive multi-jittered ('PMJ'), 'PMJ' with blue noise, 'PMJ02', and 'PMJ02' with blue noise. Includes a 'C++' 'API'. Methods derived from "Constructing Sobol sequences with better two-dimensional projections" (2012)
Extended Structural Equation Modelling
Create structural equation models that can be manipulated programmatically.
Models may be specified with matrices or paths (LISREL or RAM)
Example models include confirmatory factor, multiple group, mixture
distribution, categorical threshold, modern test theory, differential
Fit functions include full information maximum likelihood, maximum likelihood, and weighted least squares.
equations, state space, and many others.
Support and advanced package binaries available at < https://openmx.ssri.psu.edu>.
The software is described in Neale, Hunter, Pritikin, Zahery, Brick,
Kirkpatrick, Estabrook, Bates, Maes, & Boker (2016)
Tools for Working with Posterior Distributions
Provides useful tools for both users and developers of packages
for fitting Bayesian models or working with output from Bayesian models.
The primary goals of the package are to:
(a) Efficiently convert between many different useful formats of
draws (samples) from posterior or prior distributions.
(b) Provide consistent methods for operations commonly performed on draws,
for example, subsetting, binding, or mutating draws.
(c) Provide various summaries of draws in convenient formats.
(d) Provide lightweight implementations of state of the art posterior
inference diagnostics. References: Vehtari et al. (2021)
Random Sampling Distribution C++ Routines for Armadillo
Provides popular sampling distributions C++ routines based in armadillo through a header file approach.
Image Processing Library Based on 'CImg'
Fast image processing for images in up to 4 dimensions (two spatial dimensions, one time/depth dimension, one colour dimension). Provides most traditional image processing tools (filtering, morphology, transformations, etc.) as well as various functions for easily analysing image data using R. The package wraps 'CImg', < http://cimg.eu>, a simple, modern C++ library for image processing.
'C++' Headers for 'ggdmc' Package
A fast 'C++' implementation of the design-based, Diffusion Decision Model (DDM) and the Linear Ballistic Accumulation (LBA) model. It enables the user to optimise the choice response time model by connecting with the Differential Evolution Markov Chain Monte Carlo (DE-MCMC) sampler implemented in the 'ggdmc' package. The package fuses the hierarchical modelling, Bayesian inference, choice response time models and factorial designs, allowing users to build their own design-based models. For more information on the underlying models, see the works by Voss, Rothermund, and Voss (2004)
Ensemble Empirical Mode Decomposition (EEMD) and Its Complete Variant (CEEMDAN)
An R interface for libeemd (Luukko, Helske, Räsänen, 2016)
Structural Equation Modeling and Twin Modeling in R
Quickly create, run, and report structural equation models, and twin models.
See '?umx' for help, and umx_open_CRAN_page("umx") for NEWS.
Timothy C. Bates, Michael C. Neale, Hermine H. Maes, (2019). umx: A library for Structural Equation and Twin Modelling in R.
Twin Research and Human Genetics, 22, 27-41.
Testing, Monitoring, and Dating Structural Changes
Testing, monitoring and dating structural changes in (linear) regression models. strucchange features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g., CUSUM, MOSUM, recursive/moving estimates) and F statistics, respectively. It is possible to monitor incoming data online using fluctuation processes. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals. Emphasis is always given to methods for visualizing the data.