Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 10000 packages in 0.01 seconds

Rlibeemd — by Jouni Helske, 7 months ago

Ensemble Empirical Mode Decomposition (EEMD) and Its Complete Variant (CEEMDAN)

An R interface for libeemd (Luukko, Helske, Räsänen, 2016) , a C library of highly efficient parallelizable functions for performing the ensemble empirical mode decomposition (EEMD), its complete variant (CEEMDAN), the regular empirical mode decomposition (EMD), and bivariate EMD (BEMD). Due to the possible portability issues CRAN version no longer supports OpenMP, but you can install OpenMP-supported version from GitHub: < https://github.com/helske/Rlibeemd/>.

strucchange — by Achim Zeileis, a year ago

Testing, Monitoring, and Dating Structural Changes

Testing, monitoring and dating structural changes in (linear) regression models. strucchange features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g., CUSUM, MOSUM, recursive/moving estimates) and F statistics, respectively. It is possible to monitor incoming data online using fluctuation processes. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals. Emphasis is always given to methods for visualizing the data.

mapproj — by Alex Deckmyn, 6 months ago

Map Projections

Converts latitude/longitude into projected coordinates.

tictoc — by Sergei Izrailev, 2 years ago

Functions for Timing R Scripts, as Well as Implementations of "Stack" and "StackList" Structures

Code execution timing functions 'tic' and 'toc' that can be nested. One can record all timings while a complex script is running, and examine the values later. It is also possible to instrument the timing calls with custom callbacks. In addition, this package provides class 'Stack', implemented as a vector, and class 'StackList', which is a stack implemented as a list, both of which support operations 'push', 'pop', 'first_element', 'last_element' and 'clear'.

nlsr — by John C Nash, 2 years ago

Functions for Nonlinear Least Squares Solutions - Updated 2022

Provides tools for working with nonlinear least squares problems. For the estimation of models reliable and robust tools than nls(), where the the Gauss-Newton method frequently stops with 'singular gradient' messages. This is accomplished by using, where possible, analytic derivatives to compute the matrix of derivatives and a stabilization of the solution of the estimation equations. Tools for approximate or externally supplied derivative matrices are included. Bounds and masks on parameters are handled properly.

diffobj — by Brodie Gaslam, 7 months ago

Diffs for R Objects

Generate a colorized diff of two R objects for an intuitive visualization of their differences.

spdep — by Roger Bivand, 2 months ago

Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) and multicoloured join count statistics, 'APLE' ('Li et al.' ) , local 'Moran's I', 'Gearys C' ('Anselin' 1995) and 'Getis/Ord' G ('Ord' and 'Getis' 1995) , 'saddlepoint' approximations ('Tiefelsdorf' 2002) and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') . The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) , with further extensions in 'Bivand' (2022) . 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) , as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) . Additions in 2024 include Local Indicators for Categorical Data based on 'Carrer et al.' (2021) and 'Bivand et al.' (2017) ; also Weighted Multivariate Spatial Autocorrelation Measures ('Bavaud' 2024) . . A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) and 'Bivand et al.' (2017) was added in 1.3-7. Multivariate 'spatialdelta' ('Bavaud' 2024) was added in 1.3-13 ('Bivand' 2025 . From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

cld2 — by Jeroen Ooms, 8 months ago

Google's Compact Language Detector 2

Bindings to Google's C++ library Compact Language Detector 2 (see < https://github.com/cld2owners/cld2#readme> for more information). Probabilistically detects over 80 languages in plain text or HTML. For mixed-language input it returns the top three detected languages and their approximate proportion of the total classified text bytes (e.g. 80% English and 20% French out of 1000 bytes). There is also a 'cld3' package on CRAN which uses a neural network model instead.

fixest — by Laurent Berge, 2 months ago

Fast Fixed-Effects Estimations

Fast and user-friendly estimation of econometric models with multiple fixed-effects. Includes ordinary least squares (OLS), generalized linear models (GLM) and the negative binomial. The core of the package is based on optimized parallel C++ code, scaling especially well for large data sets. The method to obtain the fixed-effects coefficients is based on Berge (2018) < https://github.com/lrberge/fixest/blob/master/_DOCS/FENmlm_paper.pdf>. Further provides tools to export and view the results of several estimations with intuitive design to cluster the standard-errors.

uwot — by James Melville, 8 months ago

The Uniform Manifold Approximation and Projection (UMAP) Method for Dimensionality Reduction

An implementation of the Uniform Manifold Approximation and Projection dimensionality reduction by McInnes et al. (2018) . It also provides means to transform new data and to carry out supervised dimensionality reduction. An implementation of the related LargeVis method of Tang et al. (2016) is also provided. This is a complete re-implementation in R (and C++, via the 'Rcpp' package): no Python installation is required. See the uwot website (< https://github.com/jlmelville/uwot>) for more documentation and examples.