Found 10000 packages in 0.01 seconds
Ensemble Empirical Mode Decomposition (EEMD) and Its Complete Variant (CEEMDAN)
An R interface for libeemd (Luukko, Helske, Räsänen, 2016)
Testing, Monitoring, and Dating Structural Changes
Testing, monitoring and dating structural changes in (linear) regression models. strucchange features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g., CUSUM, MOSUM, recursive/moving estimates) and F statistics, respectively. It is possible to monitor incoming data online using fluctuation processes. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals. Emphasis is always given to methods for visualizing the data.
Map Projections
Converts latitude/longitude into projected coordinates.
Functions for Timing R Scripts, as Well as Implementations of "Stack" and "StackList" Structures
Code execution timing functions 'tic' and 'toc' that can be nested. One can record all timings while a complex script is running, and examine the values later. It is also possible to instrument the timing calls with custom callbacks. In addition, this package provides class 'Stack', implemented as a vector, and class 'StackList', which is a stack implemented as a list, both of which support operations 'push', 'pop', 'first_element', 'last_element' and 'clear'.
Functions for Nonlinear Least Squares Solutions - Updated 2022
Provides tools for working with nonlinear least squares problems. For the estimation of models reliable and robust tools than nls(), where the the Gauss-Newton method frequently stops with 'singular gradient' messages. This is accomplished by using, where possible, analytic derivatives to compute the matrix of derivatives and a stabilization of the solution of the estimation equations. Tools for approximate or externally supplied derivative matrices are included. Bounds and masks on parameters are handled properly.
Diffs for R Objects
Generate a colorized diff of two R objects for an intuitive visualization of their differences.
Spatial Dependence: Weighting Schemes, Statistics
A collection of functions to create spatial weights matrix
objects from polygon 'contiguities', from point patterns by distance and
tessellations, for summarizing these objects, and for permitting their
use in spatial data analysis, including regional aggregation by minimum
spanning tree; a collection of tests for spatial 'autocorrelation',
including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord'
(1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel'
general cross product statistic, Empirical Bayes estimates and
'Assunção/Reis' (1999)
Google's Compact Language Detector 2
Bindings to Google's C++ library Compact Language Detector 2 (see < https://github.com/cld2owners/cld2#readme> for more information). Probabilistically detects over 80 languages in plain text or HTML. For mixed-language input it returns the top three detected languages and their approximate proportion of the total classified text bytes (e.g. 80% English and 20% French out of 1000 bytes). There is also a 'cld3' package on CRAN which uses a neural network model instead.
Fast Fixed-Effects Estimations
Fast and user-friendly estimation of econometric models with multiple fixed-effects. Includes ordinary least squares (OLS), generalized linear models (GLM) and the negative binomial. The core of the package is based on optimized parallel C++ code, scaling especially well for large data sets. The method to obtain the fixed-effects coefficients is based on Berge (2018) < https://github.com/lrberge/fixest/blob/master/_DOCS/FENmlm_paper.pdf>. Further provides tools to export and view the results of several estimations with intuitive design to cluster the standard-errors.
The Uniform Manifold Approximation and Projection (UMAP) Method for Dimensionality Reduction
An implementation of the Uniform Manifold Approximation and
Projection dimensionality reduction by McInnes et al. (2018)