Found 516 packages in 0.05 seconds
Animated Interactive Grammar of Graphics
Functions are provided for defining animated,
interactive data visualizations in R code, and rendering
on a web page. The 2018 Journal of Computational and
Graphical Statistics paper,
R Package Installation from Remote Repositories, Including 'GitHub'
Download and install R packages stored in 'GitHub', 'GitLab', 'Bitbucket', 'Bioconductor', or plain 'subversion' or 'git' repositories. This package provides the 'install_*' functions in 'devtools'. Indeed most of the code was copied over from 'devtools'.
Define and Work with Parameter Spaces for Complex Algorithms
Define parameter spaces, constraints and dependencies for arbitrary algorithms, to program on such spaces. Also includes statistical designs and random samplers. Objects are implemented as 'R6' classes.
R Interface to Stan
User-facing R functions are provided to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the 'StanHeaders' package. The Stan project develops a probabilistic programming language that implements full Bayesian statistical inference via Markov Chain Monte Carlo, rough Bayesian inference via 'variational' approximation, and (optionally penalized) maximum likelihood estimation via optimization. In all three cases, automatic differentiation is used to quickly and accurately evaluate gradients without burdening the user with the need to derive the partial derivatives.
Generalized Linear Mixed Models using Template Model Builder
Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.
Export Tables to LaTeX or HTML
Coerce data to LaTeX and HTML tables.
Helpers for Parameters in Black-Box Optimization, Tuning and Machine Learning
Functions for parameter descriptions and operations in black-box optimization, tuning and machine learning. Parameters can be described (type, constraints, defaults, etc.), combined to parameter sets and can in general be programmed on. A useful OptPath object (archive) to log function evaluations is also provided.
Bayesian Additive Regression Trees with Stan-Sampled Parametric Extensions
Fits semiparametric linear and multilevel models with non-parametric additive Bayesian additive regression tree (BART; Chipman, George, and McCulloch (2010)
Markov Chain Monte Carlo (MCMC) Package
Contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library Version 1.0.3. All models return 'coda' mcmc objects that can then be summarized using the 'coda' package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided.
Spatial and Spatiotemporal SPDE-Based GLMMs with 'TMB'
Implements spatial and spatiotemporal GLMMs (Generalized Linear
Mixed Effect Models) using 'TMB', 'fmesher', and the SPDE (Stochastic Partial
Differential Equation) Gaussian Markov random field approximation to
Gaussian random fields. One common application is for spatially explicit
species distribution models (SDMs).
See Anderson et al. (2025)