Found 497 packages in 0.01 seconds
Fast Covariance Estimation for Sparse Functional Data
We implement the Fast Covariance Estimation for
Sparse Functional Data paper published in Statistics and Computing
Easy Analysis and Visualization of Factorial Experiments
Facilitates easy analysis of factorial experiments, including purely within-Ss designs (a.k.a. "repeated measures"), purely between-Ss designs, and mixed within-and-between-Ss designs. The functions in this package aim to provide simple, intuitive and consistent specification of data analysis and visualization. Visualization functions also include design visualization for pre-analysis data auditing, and correlation matrix visualization. Finally, this package includes functions for non-parametric analysis, including permutation tests and bootstrap resampling. The bootstrap function obtains predictions either by cell means or by more advanced/powerful mixed effects models, yielding predictions and confidence intervals that may be easily visualized at any level of the experiment's design.
Modeling Animal Movement with Continuous-Time Discrete-Space Markov Chains
Software to facilitates taking movement data in xyt format and pairing it with raster covariates within a continuous time Markov chain (CTMC) framework. As described in Hanks et al. (2015)
Maximum Likelihood Shrinkage using Generalized Ridge or Least Angle Regression
Functions are provided to calculate and display ridge TRACE Diagnostics for a
variety of alternative Shrinkage Paths. While all methods focus on Maximum Likelihood
estimation of unknown true effects under normal distribution-theory, some estimates are
modified to be Unbiased or to have "Correct Range" when estimating either [1] the noncentrality
of the F-ratio for testing that true Beta coefficients are Zeros or [2] the "relative" MSE
Risk (i.e. MSE divided by true sigma-square, where the "relative" variance of OLS is known.)
The eff.ridge() function implements the "Efficient Shrinkage Path" introduced in Obenchain
(2022)
A LazyData Facility
Supplies a LazyData facility for packages which have data sets but do not provide LazyData: true. A single function is is included, requireData, which is a drop-in replacement for base::require, but carrying the additional functionality. By default, it suppresses package startup messages as well. See argument 'reallyQuitely'.
Doubly Robust Distribution Balancing Weighting Estimation
Implements the doubly robust distribution balancing weighting proposed by Katsumata (2024)
Novel Methods for Parallel Coordinates
New approaches to parallel coordinates plots for multivariate data visualization, including applications to clustering, outlier hunting and regression diagnostics. Includes general functions for multivariate nonparametric density and regression estimation, using parallel computation.
Compute Scagnostics on Pairs of Numeric Variables in a Data Set
Computes a range of scatterplot diagnostics (scagnostics) on pairs
of numerical variables in a data set. A range of scagnostics, including graph
and association-based scagnostics described by Leland Wilkinson and Graham
Wills (2008)
Interactive Grammar of Graphics
An implementation of an interactive grammar of graphics, taking the best parts of 'ggplot2', combining them with the reactive framework of 'shiny' and drawing web graphics using 'vega'.
Circular Analyses Helper Functions
Light-weight functions for computing descriptive statistics in different circular spaces (e.g., 2pi, 180, or 360 degrees), to handle angle-dependent biases, pad circular data, and more. Specifically aimed for psychologists and neuroscientists analyzing circular data. Basic methods are based on Jammalamadaka and SenGupta (2001)