Found 2054 packages in 0.01 seconds
Self Calibrating Quantile-Quantile Plots for Visual Testing
Provides the function qqtest which incorporates uncertainty in its qqplot display(s) so that the user might have a better sense of the evidence against the specified distributional hypothesis. qqtest draws a quantile quantile plot for visually assessing whether the data come from a test distribution that has been defined in one of many ways. The vertical axis plots the data quantiles, the horizontal those of a test distribution. The default behaviour generates 1000 samples from the test distribution and overlays the plot with shaded pointwise interval estimates for the ordered quantiles from the test distribution. A small number of independently generated exemplar quantile plots can also be overlaid. Both the interval estimates and the exemplars provide different comparative information to assess the evidence provided by the qqplot for or against the hypothesis that the data come from the test distribution (default is normal or gaussian). Finally, a visual test of significance (a lineup plot) can also be displayed to test the null hypothesis that the data come from the test distribution.
Visualisation of Sequential Probability Distributions Using Fan Charts
Visualise sequential distributions using a range of plotting
styles. Sequential distribution data can be input as either simulations or
values corresponding to percentiles over time. Plots are added to
existing graphic devices using the fan function. Users can choose from four
different styles, including fan chart type plots, where a set of coloured
polygon, with shadings corresponding to the percentile values are layered
to represent different uncertainty levels. Full details in R Journal article; Abel (2015)
Visualisation of High-Throughput Behavioural (i.e. Ethomics) Data
Extension of 'ggplot2' providing layers, scales and preprocessing functions useful to represent behavioural variables that are recorded over multiple animals and days. This package is part of the 'rethomics' framework < https://rethomics.github.io/>.
Perceptual Analysis, Visualization and Organization of Spectral Colour Data
A cohesive framework for the spectral and spatial analysis of
colour described in Maia, Eliason, Bitton, Doucet & Shawkey (2013)
Accelerating 'ggplot2'
The aim of 'ggplot2' is to aid in visual data investigations. This focus has led to a lack of facilities for composing specialised plots. 'ggforce' aims to be a collection of mainly new stats and geoms that fills this gap. All additional functionality is aimed to come through the official extension system so using 'ggforce' should be a stable experience.
Visualizing Social Science Data with 'ggplot2'
A 'ggplot2' extension for implementing parliament charts and several other useful visualizations.
Multivariate Data Visualization with Tours and Embeddings
Compose interactive visualisations designed for exploratory
high-dimensional data analysis. With 'liminal' you can create linked
interactive graphics to diagnose the quality of a dimension reduction
technique and explore the global structure of a dataset with a tour. A
complete description of the method is discussed in
['Lee' & 'Laa' & 'Cook' (2020)
Color-Based Plots for Multivariate Visualization
Functions for color-based visualization of multivariate data, i.e. colorgrams or heatmaps. Lower-level functions map numeric values to colors, display a matrix as an array of colors, and draw color keys. Higher-level plotting functions generate a bivariate histogram, a dendrogram aligned with a color-coded matrix, a triangular distance matrix, and more.
A Dipping Sauce for Data Analysis and Visualizations
Works as an "add-on" to packages like 'shiny', 'future', as well as 'rlang', and provides utility functions. Just like dipping sauce adding flavors to potato chips or pita bread, 'dipsaus' for data analysis and visualizations adds handy functions and enhancements to popular packages. The goal is to provide simple solutions that are frequently asked for online, such as how to synchronize 'shiny' inputs without freezing the app, or how to get memory size on 'Linux' or 'MacOS' system. The enhancements roughly fall into these four categories: 1. 'shiny' input widgets; 2. high-performance computing using the 'future' package; 3. modify R calls and convert among numbers, strings, and other objects. 4. utility functions to get system information such like CPU chip-set, memory limit, etc.
Interactive Viewing of Spatial Data in R
Quickly and conveniently create interactive visualisations of spatial data with or without background maps. Attributes of displayed features are fully queryable via pop-up windows. Additional functionality includes methods to visualise true- and false-color raster images and bounding boxes.