Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 142 packages in 0.06 seconds

geodist — by Mark Padgham, 3 months ago

Fast, Dependency-Free Geodesic Distance Calculations

Dependency-free, ultra fast calculation of geodesic distances. Includes the reference nanometre-accuracy geodesic distances of Karney (2013) , as used by the 'sf' package, as well as Haversine and Vincenty distances. Default distance measure is the "Mapbox cheap ruler" which is generally more accurate than Haversine or Vincenty for distances out to a few hundred kilometres, and is considerably faster. The main function accepts one or two inputs in almost any generic rectangular form, and returns either matrices of pairwise distances, or vectors of sequential distances.

plotrr — by Charles Crabtree, 8 years ago

Making Visual Exploratory Data Analysis with Nested Data Easier

Functions for making visual exploratory data analysis with nested data easier.

networkD3 — by Christopher Gandrud, 3 months ago

D3 JavaScript Network Graphs from R

Creates 'D3' 'JavaScript' network, tree, dendrogram, and Sankey graphs from 'R'.

rcdd — by Charles J. Geyer, 2 years ago

Computational Geometry

R interface to (some of) cddlib (< https://github.com/cddlib/cddlib>). Converts back and forth between two representations of a convex polytope: as solution of a set of linear equalities and inequalities and as convex hull of set of points and rays. Also does linear programming and redundant generator elimination (for example, convex hull in n dimensions). All functions can use exact infinite-precision rational arithmetic.

udpipe — by Jan Wijffels, 3 years ago

Tokenization, Parts of Speech Tagging, Lemmatization and Dependency Parsing with the 'UDPipe' 'NLP' Toolkit

This natural language processing toolkit provides language-agnostic 'tokenization', 'parts of speech tagging', 'lemmatization' and 'dependency parsing' of raw text. Next to text parsing, the package also allows you to train annotation models based on data of 'treebanks' in 'CoNLL-U' format as provided at < https://universaldependencies.org/format.html>. The techniques are explained in detail in the paper: 'Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe', available at . The toolkit also contains functionalities for commonly used data manipulations on texts which are enriched with the output of the parser. Namely functionalities and algorithms for collocations, token co-occurrence, document term matrix handling, term frequency inverse document frequency calculations, information retrieval metrics (Okapi BM25), handling of multi-word expressions, keyword detection (Rapid Automatic Keyword Extraction, noun phrase extraction, syntactical patterns) sentiment scoring and semantic similarity analysis.

BART — by Rodney Sparapani, a year ago

Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) provide flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event outcomes. For more information see Sparapani, Spanbauer and McCulloch .

mcmc — by Charles J. Geyer, 2 years ago

Markov Chain Monte Carlo

Simulates continuous distributions of random vectors using Markov chain Monte Carlo (MCMC). Users specify the distribution by an R function that evaluates the log unnormalized density. Algorithms are random walk Metropolis algorithm (function metrop), simulated tempering (function temper), and morphometric random walk Metropolis (Johnson and Geyer, 2012, , function morph.metrop), which achieves geometric ergodicity by change of variable.

MBCbook — by Charles Bouveyron, a year ago

Companion Package for the Book "Model-Based Clustering and Classification for Data Science"

The companion package provides all original data sets and functions that are used in the book "Model-Based Clustering and Classification for Data Science" by Charles Bouveyron, Gilles Celeux, T. Brendan Murphy and Adrian E. Raftery (2019, ISBN:9781108644181).

funFEM — by Charles Bouveyron, 4 years ago

Clustering in the Discriminative Functional Subspace

The funFEM algorithm (Bouveyron et al., 2014) allows to cluster functional data by modeling the curves within a common and discriminative functional subspace.

LogicReg — by Charles Kooperberg, 2 years ago

Logic Regression

Routines for fitting Logic Regression models. Logic Regression is described in Ruczinski, Kooperberg, and LeBlanc (2003) . Monte Carlo Logic Regression is described in and Kooperberg and Ruczinski (2005) .