Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 424 packages in 0.01 seconds

foreign — by R Core Team, 7 months ago

Read Data Stored by 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', 'dBase', ...

Reading and writing data stored by some versions of 'Epi Info', 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', and for reading and writing some 'dBase' files.

rstpm2 — by Mark Clements, 2 months ago

Smooth Survival Models, Including Generalized Survival Models

R implementation of generalized survival models (GSMs), smooth accelerated failure time (AFT) models and Markov multi-state models. For the GSMs, g(S(t|x))=eta(t,x) for a link function g, survival S at time t with covariates x and a linear predictor eta(t,x). The main assumption is that the time effect(s) are smooth . For fully parametric models with natural splines, this re-implements Stata's 'stpm2' function, which are flexible parametric survival models developed by Royston and colleagues. We have extended the parametric models to include any smooth parametric smoothers for time. We have also extended the model to include any smooth penalized smoothers from the 'mgcv' package, using penalized likelihood. These models include left truncation, right censoring, interval censoring, gamma frailties and normal random effects , and copulas. For the smooth AFTs, S(t|x) = S_0(t*eta(t,x)), where the baseline survival function S_0(t)=exp(-exp(eta_0(t))) is modelled for natural splines for eta_0, and the time-dependent cumulative acceleration factor eta(t,x)=\int_0^t exp(eta_1(u,x)) du for log acceleration factor eta_1(u,x). The Markov multi-state models allow for a range of models with smooth transitions to predict transition probabilities, length of stay, utilities and costs, with differences, ratios and standardisation.

network — by Carter T. Butts, 10 months ago

Classes for Relational Data

Tools to create and modify network objects. The network class can represent a range of relational data types, and supports arbitrary vertex/edge/graph attributes.

spatstat.explore — by Adrian Baddeley, a month ago

Exploratory Data Analysis for the 'spatstat' Family

Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.

coin — by Torsten Hothorn, 2 years ago

Conditional Inference Procedures in a Permutation Test Framework

Conditional inference procedures for the general independence problem including two-sample, K-sample (non-parametric ANOVA), correlation, censored, ordered and multivariate problems described in .

optmatch — by Josh Errickson, a year ago

Functions for Optimal Matching

Distance based bipartite matching using minimum cost flow, oriented to matching of treatment and control groups in observational studies ('Hansen' and 'Klopfer' 2006 ). Routines are provided to generate distances from generalised linear models (propensity score matching), formulas giving variables on which to limit matched distances, stratified or exact matching directives, or calipers, alone or in combination.

lintools — by Mark van der Loo, 3 years ago

Manipulation of Linear Systems of (in)Equalities

Variable elimination (Gaussian elimination, Fourier-Motzkin elimination), Moore-Penrose pseudoinverse, reduction to reduced row echelon form, value substitution, projecting a vector on the convex polytope described by a system of (in)equations, simplify systems by removing spurious columns and rows and collapse implied equalities, test if a matrix is totally unimodular, compute variable ranges implied by linear (in)equalities.

dtplyr — by Hadley Wickham, a month ago

Data Table Back-End for 'dplyr'

Provides a data.table backend for 'dplyr'. The goal of 'dtplyr' is to allow you to write 'dplyr' code that is automatically translated to the equivalent, but usually much faster, data.table code.

RMark — by Jeff Laake, 3 years ago

R Code for Mark Analysis

An interface to the software package MARK that constructs input files for MARK and extracts the output. MARK was developed by Gary White and is freely available at < http://www.phidot.org/software/mark/downloads/> but is not open source.

spatstat — by Adrian Baddeley, 20 days ago

Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.