Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 142 packages in 0.04 seconds

nlstools — by Aurelie Siberchicot, a year ago

Tools for Nonlinear Regression Analysis

Several tools for assessing the quality of fit of a gaussian nonlinear model are provided.

websearchr — by Florian S. Schaffner, 7 years ago

Access Domains and Search Popular Websites

Functions that allow for accessing domains and a number of search engines.

lsei — by Yong Wang, 5 years ago

Solving Least Squares or Quadratic Programming Problems under Equality/Inequality Constraints

It contains functions that solve least squares linear regression problems under linear equality/inequality constraints. Functions for solving quadratic programming problems are also available, which transform such problems into least squares ones first. It is developed based on the 'Fortran' program of Lawson and Hanson (1974, 1995), which is public domain and available at < http://www.netlib.org/lawson-hanson/>.

aster — by Charles J. Geyer, a month ago

Aster Models

Aster models (Geyer, Wagenius, and Shaw, 2007, ; Shaw, Geyer, Wagenius, Hangelbroek, and Etterson, 2008, ; Geyer, Ridley, Latta, Etterson, and Shaw, 2013, ) are exponential family regression models for life history analysis. They are like generalized linear models except that elements of the response vector can have different families (e. g., some Bernoulli, some Poisson, some zero-truncated Poisson, some normal) and can be dependent, the dependence indicated by a graphical structure. Discrete time survival analysis, life table analysis, zero-inflated Poisson regression, and generalized linear models that are exponential family (e. g., logistic regression and Poisson regression with log link) are special cases. Main use is for data in which there is survival over discrete time periods and there is additional data about what happens conditional on survival (e. g., number of offspring). Uses the exponential family canonical parameterization (aster transform of usual parameterization). There are also random effects versions of these models.

sfsmisc — by Martin Maechler, 8 months ago

Utilities from 'Seminar fuer Statistik' ETH Zurich

Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().

antitrust — by Charles Taragin, 3 years ago

Tools for Antitrust Practitioners

A collection of tools for antitrust practitioners, including the ability to calibrate different consumer demand systems and simulate the effects of mergers under different competitive regimes.

competitiontoolbox — by Charles Taragin, 3 years ago

A Graphical User Interface for Antitrust and Trade Practitioners

A graphical user interface for simulating the effects of mergers, tariffs, and quotas under an assortment of different economic models. The interface is powered by the 'Shiny' web application framework from 'RStudio'.

ctsem — by Charles Driver, 9 days ago

Continuous Time Structural Equation Modelling

Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See < https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. See < https://osf.io/preprints/psyarxiv/4q9ex_v2> for a detailed tutorial. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see < https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see < https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . < https://cdriver.netlify.app/> contains some tutorial blog posts.

tip — by Charles W. Harrison, 3 years ago

Bayesian Clustering Using the Table Invitation Prior (TIP)

Cluster data without specifying the number of clusters using the Table Invitation Prior (TIP) introduced in the paper "Clustering Gene Expression Using the Table Invitation Prior" by Charles W. Harrison, Qing He, and Hsin-Hsiung Huang (2022) . TIP is a Bayesian prior that uses pairwise distance and similarity information to cluster vectors, matrices, or tensors.

CUFF — by Charles-Édouard Giguère, 2 years ago

Charles's Utility Function using Formula

Utility functions that provides wrapper to descriptive base functions like cor, mean and table. It makes use of the formula interface to pass variables to functions. It also provides operators to concatenate (%+%), to repeat (%n%) and manage character vectors for nice display.