Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 148 packages in 0.01 seconds

aster — by Charles J. Geyer, 15 days ago

Aster Models

Aster models (Geyer, Wagenius, and Shaw, 2007, ; Shaw, Geyer, Wagenius, Hangelbroek, and Etterson, 2008, ; Geyer, Ridley, Latta, Etterson, and Shaw, 2013, ) are exponential family regression models for life history analysis. They are like generalized linear models except that elements of the response vector can have different families (e. g., some Bernoulli, some Poisson, some zero-truncated Poisson, some normal) and can be dependent, the dependence indicated by a graphical structure. Discrete time survival analysis, life table analysis, zero-inflated Poisson regression, and generalized linear models that are exponential family (e. g., logistic regression and Poisson regression with log link) are special cases. Main use is for data in which there is survival over discrete time periods and there is additional data about what happens conditional on survival (e. g., number of offspring). Uses the exponential family canonical parameterization (aster transform of usual parameterization). There are also random effects versions of these models.

antitrust — by Charles Taragin, 3 months ago

Tools for Antitrust Practitioners

A collection of tools for antitrust practitioners, including the ability to calibrate different consumer demand systems and simulate the effects of mergers under different competitive regimes.

competitiontoolbox — by Charles Taragin, 3 years ago

A Graphical User Interface for Antitrust and Trade Practitioners

A graphical user interface for simulating the effects of mergers, tariffs, and quotas under an assortment of different economic models. The interface is powered by the 'Shiny' web application framework from 'RStudio'.

ctsem — by Charles Driver, 6 months ago

Continuous Time Structural Equation Modelling

Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See < https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. See < https://osf.io/preprints/psyarxiv/4q9ex_v2> for a detailed tutorial. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see < https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see < https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . < https://cdriver.netlify.app/> contains some tutorial blog posts.

limSolve — by Karline Soetaert, 6 months ago

Solving Linear Inverse Models

Functions that (1) find the minimum/maximum of a linear or quadratic function: min or max (f(x)), where f(x) = ||Ax-b||^2 or f(x) = sum(a_i*x_i) subject to equality constraints Ex=f and/or inequality constraints Gx>=h, (2) sample an underdetermined- or overdetermined system Ex=f subject to Gx>=h, and if applicable Ax~=b, (3) solve a linear system Ax=B for the unknown x. It includes banded and tridiagonal linear systems.

tip — by Charles W. Harrison, 3 years ago

Bayesian Clustering Using the Table Invitation Prior (TIP)

Cluster data without specifying the number of clusters using the Table Invitation Prior (TIP) introduced in the paper "Clustering Gene Expression Using the Table Invitation Prior" by Charles W. Harrison, Qing He, and Hsin-Hsiung Huang (2022) . TIP is a Bayesian prior that uses pairwise distance and similarity information to cluster vectors, matrices, or tensors.

CUFF — by Charles-Édouard Giguère, 3 years ago

Charles's Utility Function using Formula

Utility functions that provides wrapper to descriptive base functions like cor, mean and table. It makes use of the formula interface to pass variables to functions. It also provides operators to concatenate (%+%), to repeat (%n%) and manage character vectors for nice display.

funFEM — by Charles Bouveyron, 4 years ago

Clustering in the Discriminative Functional Subspace

The funFEM algorithm (Bouveyron et al., 2014) allows to cluster functional data by modeling the curves within a common and discriminative functional subspace.

LogicReg — by Charles Kooperberg, 2 years ago

Logic Regression

Routines for fitting Logic Regression models. Logic Regression is described in Ruczinski, Kooperberg, and LeBlanc (2003) . Monte Carlo Logic Regression is described in and Kooperberg and Ruczinski (2005) .

robustDA — by Charles Bouveyron, 5 years ago

Robust Mixture Discriminant Analysis

Robust mixture discriminant analysis (RMDA), proposed in Bouveyron & Girard, 2009 , allows to build a robust supervised classifier from learning data with label noise. The idea of the proposed method is to confront an unsupervised modeling of the data with the supervised information carried by the labels of the learning data in order to detect inconsistencies. The method is able afterward to build a robust classifier taking into account the detected inconsistencies into the labels.