Found 142 packages in 0.04 seconds
Tools for Nonlinear Regression Analysis
Several tools for assessing the quality of fit of a gaussian nonlinear model are provided.
Access Domains and Search Popular Websites
Functions that allow for accessing domains and a number of search engines.
Solving Least Squares or Quadratic Programming Problems under Equality/Inequality Constraints
It contains functions that solve least squares linear regression problems under linear equality/inequality constraints. Functions for solving quadratic programming problems are also available, which transform such problems into least squares ones first. It is developed based on the 'Fortran' program of Lawson and Hanson (1974, 1995), which is public domain and available at < http://www.netlib.org/lawson-hanson/>.
Aster Models
Aster models (Geyer, Wagenius, and Shaw, 2007,
Utilities from 'Seminar fuer Statistik' ETH Zurich
Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().
Tools for Antitrust Practitioners
A collection of tools for antitrust practitioners, including the ability to calibrate different consumer demand systems and simulate the effects of mergers under different competitive regimes.
A Graphical User Interface for Antitrust and Trade Practitioners
A graphical user interface for simulating the effects of mergers, tariffs, and quotas under an assortment of different economic models. The interface is powered by the 'Shiny' web application framework from 'RStudio'.
Continuous Time Structural Equation Modelling
Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See < https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. See < https://osf.io/preprints/psyarxiv/4q9ex_v2> for a detailed tutorial. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see < https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see < https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . < https://cdriver.netlify.app/> contains some tutorial blog posts.
Bayesian Clustering Using the Table Invitation Prior (TIP)
Cluster data without specifying the number of clusters using the Table Invitation Prior (TIP) introduced in the paper "Clustering Gene Expression Using the Table Invitation Prior" by Charles W. Harrison, Qing He, and Hsin-Hsiung Huang (2022)
Charles's Utility Function using Formula
Utility functions that provides wrapper to descriptive base functions like cor, mean and table. It makes use of the formula interface to pass variables to functions. It also provides operators to concatenate (%+%), to repeat (%n%) and manage character vectors for nice display.