Found 8325 packages in 0.10 seconds
Bayesian Variable Selection in High Dimensional Settings using Nonlocal Priors
Variable/Feature selection in high or ultra-high dimensional settings has gained a lot of attention recently specially in cancer genomic studies. This package provides a Bayesian approach to tackle this problem, where it exploits mixture of point masses at zero and nonlocal priors to improve the performance of variable selection and coefficient estimation. product moment (pMOM) and product inverse moment (piMOM) nonlocal priors are implemented and can be used for the analyses. This package performs variable selection for binary response and survival time response datasets which are widely used in biostatistic and bioinformatics community. Benefiting from parallel computing ability, it reports necessary outcomes of Bayesian variable selection such as Highest Posterior Probability Model (HPPM), Median Probability Model (MPM) and posterior inclusion probability for each of the covariates in the model. The option to use Bayesian Model Averaging (BMA) is also part of this package that can be exploited for predictive power measurements in real datasets.
Bayesian Variable Selection using Power-Expected-Posterior Prior
Performs Bayesian variable selection under normal linear
models for the data with the model parameters following as prior distributions either
the power-expected-posterior (PEP) or the intrinsic (a special case of the former)
(Fouskakis and Ntzoufras (2022)
Robust Bayesian Meta-Analyses
A framework for estimating ensembles of meta-analytic, meta-regression, and
multilevel models (assuming either presence or absence of the effect, heterogeneity,
publication bias, and moderators). The RoBMA framework uses Bayesian model-averaging to
combine the competing meta-analytic models into a model ensemble, weights
the posterior parameter distributions based on posterior model probabilities
and uses Bayes factors to test for the presence or absence of the
individual components (e.g., effect vs. no effect; Bartoš et al., 2022,
Evolutionary Mode Jumping Markov Chain Monte Carlo Expert Toolbox
Implementation of the Mode Jumping Markov Chain Monte Carlo algorithm from Hubin, A., Storvik, G. (2018)
MCMC for Spike and Slab Regression
Spike and slab regression with a variety of residual error
distributions corresponding to Gaussian, Student T, probit, logit, SVM, and a
few others. Spike and slab regression is Bayesian regression with prior
distributions containing a point mass at zero. The posterior updates the
amount of mass on this point, leading to a posterior distribution that is
actually sparse, in the sense that if you sample from it many coefficients are
actually zeros. Sampling from this posterior distribution is an elegant way
to handle Bayesian variable selection and model averaging. See
All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models
Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.
Bayesian Analysis of Generalized Linear Models with Historical Data
User-friendly functions for leveraging (multiple) historical data set(s) in Bayesian analysis of generalized
linear models (GLMs) and survival models, along with support for Bayesian model averaging (BMA). The package provides
functions for sampling from posterior distributions under various informative priors, including the prior induced by the
Bayesian hierarchical model, power prior by Ibrahim and Chen (2000)
Bayesian Change-Point Detection and Time Series Decomposition
BEAST is a Bayesian estimator of abrupt change, seasonality, and trend for decomposing univariate time series and 1D sequential data. Interpretation of time series depends on model choice; different models can yield contrasting or contradicting estimates of patterns, trends, and mechanisms. BEAST alleviates this by abandoning the single-best-model paradigm and instead using Bayesian model averaging over many competing decompositions. It detects and characterizes abrupt changes (changepoints, breakpoints, structural breaks, joinpoints), cyclic or seasonal variation, and nonlinear trends. BEAST not only detects when changes occur but also quantifies how likely the changes are true. It estimates not just piecewise linear trends but also arbitrary nonlinear trends. BEAST is generically applicable to any real-valued time series, such as those from remote sensing, economics, climate science, ecology, hydrology, and other environmental and biological systems. Example applications include identifying regime shifts in ecological data, mapping forest disturbance and land degradation from satellite image time series, detecting market trends in economic indicators, pinpointing anomalies and extreme events in climate records, and analyzing system dynamics in biological time series. Details are given in Zhao et al. (2019)
Model Selection with Bayesian Methods and Information Criteria
Model selection and averaging for regression and mixtures, inclusing Bayesian model selection and information criteria (BIC, EBIC, AIC, GIC).
Bayesian Marginal Effects for 'brms' Models
Calculate Bayesian marginal effects, average marginal effects, and marginal coefficients (also called population averaged coefficients) for models fit using the 'brms' package including fixed effects, mixed effects, and location scale models. These are based on marginal predictions that integrate out random effects if necessary (see for example