Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1042 packages in 0.06 seconds

filehash — by Roger D. Peng, a year ago

Simple Key-Value Database

Implements a simple key-value style database where character string keys are associated with data values that are stored on the disk. A simple interface is provided for inserting, retrieving, and deleting data from the database. Utilities are provided that allow 'filehash' databases to be treated much like environments and lists are already used in R. These utilities are provided to encourage interactive and exploratory analysis on large datasets. Three different file formats for representing the database are currently available and new formats can easily be incorporated by third parties for use in the 'filehash' framework.

ggpolypath — by Michael D. Sumner, 2 years ago

Polygons with Holes for the Grammar of Graphics

Tools for working with polygons with holes in 'ggplot2', with a new 'geom' for drawing a 'polypath' applying the 'evenodd' or 'winding' rules.

tuneR — by Uwe Ligges, a year ago

Analysis of Music and Speech

Analyze music and speech, extract features like MFCCs, handle wave files and their representation in various ways, read mp3, read midi, perform steps of a transcription, ... Also contains functions ported from the 'rastamat' 'Matlab' package.

mixture — by Paul D. McNicholas, 2 months ago

Mixture Models for Clustering and Classification

An implementation of 14 parsimonious mixture models for model-based clustering or model-based classification. Gaussian, Student's t, generalized hyperbolic, variance-gamma or skew-t mixtures are available. All approaches work with missing data. Celeux and Govaert (1995) , Browne and McNicholas (2014) , Browne and McNicholas (2015) .

Seurat — by Rahul Satija, 3 months ago

Tools for Single Cell Genomics

A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) , Macosko E, Basu A, Satija R, et al (2015) , Stuart T, Butler A, et al (2019) , and Hao, Hao, et al (2020) for more details.

MortalityLaws — by Marius D. Pascariu, 3 months ago

Parametric Mortality Models, Life Tables and HMD

Fit the most popular human mortality 'laws', and construct full and abridge life tables given various input indices. A mortality law is a parametric function that describes the dying-out process of individuals in a population during a significant portion of their life spans. For a comprehensive review of the most important mortality laws see Tabeau (2001) . Practical functions for downloading data from various human mortality databases are provided as well.

nor1mix — by Martin Maechler, a year ago

Normal aka Gaussian 1-d Mixture Models

Onedimensional Normal (i.e. Gaussian) Mixture Models (S3) Classes, for, e.g., density estimation or clustering algorithms research and teaching; providing the widely used Marron-Wand densities. Efficient random number generation and graphics. Fitting to data by efficient ML (Maximum Likelihood) or traditional EM estimation.

univOutl — by Marcello D'Orazio, 3 years ago

Detection of Univariate Outliers

Well known outlier detection techniques in the univariate case. Methods to deal with skewed distribution are included too. The Hidiroglou-Berthelot (1986) method to search for outliers in ratios of historical data is implemented as well. When available, survey weights can be used in outliers detection.

posterior — by Paul-Christian Bürkner, 5 months ago

Tools for Working with Posterior Distributions

Provides useful tools for both users and developers of packages for fitting Bayesian models or working with output from Bayesian models. The primary goals of the package are to: (a) Efficiently convert between many different useful formats of draws (samples) from posterior or prior distributions. (b) Provide consistent methods for operations commonly performed on draws, for example, subsetting, binding, or mutating draws. (c) Provide various summaries of draws in convenient formats. (d) Provide lightweight implementations of state of the art posterior inference diagnostics. References: Vehtari et al. (2021) .

lavaan.mi — by Terrence D. Jorgensen, 4 months ago

Fit Structural Equation Models to Multiply Imputed Data

The primary purpose of 'lavaan.mi' is to extend the functionality of the R package 'lavaan', which implements structural equation modeling (SEM). When incomplete data have been multiply imputed, the imputed data sets can be analyzed by 'lavaan' using complete-data estimation methods, but results must be pooled across imputations (Rubin, 1987, ). The 'lavaan.mi' package automates the pooling of point and standard-error estimates, as well as a variety of test statistics, using a familiar interface that allows users to fit an SEM to multiple imputations as they would to a single data set using the 'lavaan' package.