Found 44 packages in 0.01 seconds
MCMC, Particle Filtering, and Programmable Hierarchical Modeling
A system for writing hierarchical statistical models largely compatible with 'BUGS' and 'JAGS', writing nimbleFunctions to operate models and do basic R-style math, and compiling both models and nimbleFunctions via custom-generated C++. 'NIMBLE' includes default methods for MCMC, Laplace Approximation, deterministic nested approximations, Monte Carlo Expectation Maximization, and some other tools. The nimbleFunction system makes it easy to do things like implement new MCMC samplers from R, customize the assignment of samplers to different parts of a model from R, and compile the new samplers automatically via C++ alongside the samplers 'NIMBLE' provides. 'NIMBLE' extends the 'BUGS'/'JAGS' language by making it extensible: New distributions and functions can be added, including as calls to external compiled code. Although most people think of MCMC as the main goal of the 'BUGS'/'JAGS' language for writing models, one can use 'NIMBLE' for writing arbitrary other kinds of model-generic algorithms as well. A full User Manual is available at < https://r-nimble.org>.
Multi-Purpose and Flexible k-Meric Enrichment Analysis Software
A multi-purpose and flexible k-meric enrichment analysis software. 'kmeRtone' measures the enrichment of k-mers by comparing the population of k-mers in the case loci with a carefully devised internal negative control group, consisting of k-mers from regions close to, yet sufficiently distant from, the case loci to mitigate any potential sequencing bias. This method effectively captures both the local sequencing variations and broader sequence influences, while also correcting for potential biases, thereby ensuring more accurate analysis. The core functionality of 'kmeRtone' is the SCORE() function, which calculates the susceptibility scores for k-mers in case and control regions. Case regions are defined by the genomic coordinates provided in a file by the user and the control regions can be constructed relative to the case regions or provided directly. The k-meric susceptibility scores are calculated by using a one-proportion z-statistic. 'kmeRtone' is highly flexible by allowing users to also specify their target k-mer patterns and quantify the corresponding k-mer enrichment scores in the context of these patterns, allowing for a more comprehensive approach to understanding the functional implications of specific DNA sequences on a genomic scale (e.g., CT motifs upon UV radiation damage). Adib A. Abdullah, Patrick Pflughaupt, Claudia Feng, Aleksandr B. Sahakyan (2024) Bioinformatics (submitted).
Harmonizing Various Comorbidity, Multimorbidity, and Frailty Measures
Identifying comorbidities, frailty, and multimorbidity in claims
and administrative data is often a duplicative process.
The functions contained in this package are meant to first prepare the data to a format
acceptable by all other packages, then provide a uniform and simple approach to
generate comorbidity and multimorbidity metrics based on these claims data. The package
is ever evolving to include new metrics, and is always looking for new measures to include.
The citations used in this package include the following publications:
Anne Elixhauser, Claudia Steiner, D. Robert Harris, Rosanna M. Coffey (1998)
Data Wrangling and Automated Reports from 'SIVIGILA' Source
Data wrangling, pre-processing, and generating automated reports from Colombia's epidemiological surveillance system, 'SIVIGILA' < https://portalsivigila.ins.gov.co/>. It provides a customizable R Markdown template for analysis and automatic generation of epidemiological reports that can be adapted to local, regional, and national contexts. This tool offers a standardized and reproducible workflow that helps to reduce manual labor and potential errors in report generation, improving their efficiency and consistency.