Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 5994 packages in 0.01 seconds

Watersheds — by J. A. Torres-Matallana, 10 years ago

Spatial Watershed Aggregation and Spatial Drainage Network Analysis

Methods for watersheds aggregation and spatial drainage network analysis.

PRANA — by Seungjun Ahn, a year ago

Pseudo-Value Regression Approach for Network Analysis (PRANA)

A novel pseudo-value regression approach for the differential co-expression network analysis in expression data, which can incorporate additional clinical variables in the model. This is a direct regression modeling for the differential network analysis, and it is therefore computationally amenable for the most users. The full methodological details can be found in Ahn S et al (2023) .

NeuralNetTools — by Marcus W. Beck, 4 years ago

Visualization and Analysis Tools for Neural Networks

Visualization and analysis tools to aid in the interpretation of neural network models. Functions are available for plotting, quantifying variable importance, conducting a sensitivity analysis, and obtaining a simple list of model weights.

statnet — by Martina Morris, 7 years ago

Software Tools for the Statistical Analysis of Network Data

Statnet is a collection of packages for statistical network analysis that are designed to work together because they share common data representations and 'API' design. They provide an integrated set of tools for the representation, visualization, analysis, and simulation of many different forms of network data. This package is designed to make it easy to install and load the key 'statnet' packages in a single step. Learn more about 'statnet' at < http://www.statnet.org>. Tutorials for many packages can be found at < https://github.com/statnet/Workshops/wiki>. For an introduction to functions in this package, type help(package='statnet').

DDPNA — by Kefu Liu, 5 months ago

Disease-Drived Differential Proteins Co-Expression Network Analysis

Functions designed to connect disease-related differential proteins and co-expression network. It provides the basic statics analysis included t test, ANOVA analysis. The network construction is not offered by the package, you can used 'WGCNA' package which you can learn in Peter et al. (2008) . It also provides module analysis included PCA analysis, two enrichment analysis, Planner maximally filtered graph extraction and hub analysis.

SEMgraph — by Barbara Tarantino, 6 days ago

Network Analysis and Causal Inference Through Structural Equation Modeling

Estimate networks and causal relationships in complex systems through Structural Equation Modeling. This package also includes functions for importing, weight, manipulate, and fit biological network models within the Structural Equation Modeling framework as outlined in the Supplementary Material of Grassi M, Palluzzi F, Tarantino B (2022) .

ergm — by Pavel N. Krivitsky, 2 days ago

Fit, Simulate and Diagnose Exponential-Family Models for Networks

An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGMs). 'ergm' is a part of the Statnet suite of packages for network analysis. See Hunter, Handcock, Butts, Goodreau, and Morris (2008) and Krivitsky, Hunter, Morris, and Klumb (2023) .

BoolNet — by Hans A. Kestler, 2 years ago

Construction, Simulation and Analysis of Boolean Networks

Functions to reconstruct, generate, and simulate synchronous, asynchronous, probabilistic, and temporal Boolean networks. Provides also functions to analyze and visualize attractors in Boolean networks .

ipaddress — by David Hall, 4 months ago

Data Analysis for IP Addresses and Networks

Classes and functions for working with IP (Internet Protocol) addresses and networks, inspired by the Python 'ipaddress' module. Offers full support for both IPv4 and IPv6 (Internet Protocol versions 4 and 6) address spaces. It is specifically designed to work well with the 'tidyverse'.

wiseR — by Tavpritesh Sethi, 7 years ago

A Shiny Application for End-to-End Bayesian Decision Network Analysis and Web-Deployment

A Shiny application for learning Bayesian Decision Networks from data. This package can be used for probabilistic reasoning (in the observational setting), causal inference (in the presence of interventions) and learning policy decisions (in Decision Network setting). Functionalities include end-to-end implementations for data-preprocessing, structure-learning, exact inference, approximate inference, extending the learned structure to Decision Networks and policy optimization using statistically rigorous methods such as bootstraps, resampling, ensemble-averaging and cross-validation. In addition to Bayesian Decision Networks, it also features correlation networks, community-detection, graph visualizations, graph exports and web-deployment of the learned models as Shiny dashboards.