Found 171 packages in 0.02 seconds
Variable Selection Using Random Forests
Three steps variable selection procedure based on random forests. Initially developed to handle high dimensional data (for which number of variables largely exceeds number of observations), the package is very versatile and can treat most dimensions of data, for regression and supervised classification problems. First step is dedicated to eliminate irrelevant variables from the dataset. Second step aims to select all variables related to the response for interpretation purpose. Third step refines the selection by eliminating redundancy in the set of variables selected by the second step, for prediction purpose. Genuer, R. Poggi, J.-M. and Tuleau-Malot, C. (2015) < https://journal.r-project.org/archive/2015-2/genuer-poggi-tuleaumalot.pdf>.
The Hyperdirichlet Distribution, Mark 2
A suite of routines for the hyperdirichlet distribution
and reified Bradley-Terry; supersedes the 'hyperdirichlet' package;
uses 'disordR' discipline
Exploratory Data Analysis for the 'spatstat' Family
Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
Distances on Directed Graphs
Distances on dual-weighted directed graphs using
priority-queue shortest paths (Padgham (2019)
Extension to 'tmap' for Creating Network Visualizations
Provides functions for visualizing networks with 'tmap'. It supports 'sfnetworks' objects natively but is not limited to them. Useful for adding network layers such as edges and nodes to 'tmap' maps. More features may be added in future versions.
Interface Between 'GRASS' Geographical Information System and 'R'
An interface between the 'GRASS' geographical information system ('GIS') and 'R', based on starting 'R' from within the 'GRASS' 'GIS' environment, or running a free-standing 'R' session in a temporary 'GRASS' location; the package provides facilities for using all 'GRASS' commands from the 'R' command line. The original interface package for 'GRASS 5' (2000-2010) is described in Bivand (2000)
Simultaneous Inference for Multiple Linear Contrasts in GEE Models
Provides global hypothesis tests, multiple testing procedures and simultaneous confidence intervals for multiple linear contrasts of regression coefficients in a single generalized estimating equation (GEE) model or across multiple GEE models. GEE models are fit by a modified version of the 'geeM' package.
Cluster Origin-Destination Flow Data
Provides functionality for clustering
origin-destination (OD) pairs, representing desire lines (or flows).
This includes creating distance matrices between OD pairs and passing
distance matrices to a clustering algorithm. See the academic paper
Tao and Thill (2016)
Read and Write CSV on the Web (CSVW) Tables and Metadata
Provide functions for reading and writing CSVW - i.e. CSV tables and JSON metadata. The metadata helps interpret CSV by setting the types and variable names.
Estimate Parameters in the Generalized SBM
Given an adjacency matrix drawn from a Generalized Stochastic Block Model with missing observations, this package robustly estimates the probabilities of connection between nodes and detects outliers nodes, as describes in Gaucher, Klopp and Robin (2019)