Found 134 packages in 0.14 seconds
Statistical Analysis for Random Objects and Non-Euclidean Data
Provides implementation of statistical methods for random objects
lying in various metric spaces, which are not necessarily linear spaces.
The core of this package is Fréchet regression for random objects with
Euclidean predictors, which allows one to perform regression analysis
for non-Euclidean responses under some mild conditions.
Examples include distributions in 2-Wasserstein space,
covariance matrices endowed with power metric (with Frobenius metric
as a special case), Cholesky and log-Cholesky metrics, spherical data.
References: Petersen, A., & Müller, H.-G. (2019)
Functional Data Analysis and Empirical Dynamics
A versatile package that provides implementation of various
methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this
package is Functional Principal Component Analysis (FPCA), a key technique for
functional data analysis, for sparsely or densely sampled random trajectories
and time courses, via the Principal Analysis by Conditional Estimation
(PACE) algorithm. This core algorithm yields covariance and mean functions,
eigenfunctions and principal component (scores), for both functional data and
derivatives, for both dense (functional) and sparse (longitudinal) sampling designs.
For sparse designs, it provides fitted continuous trajectories with confidence bands,
even for subjects with very few longitudinal observations. PACE is a viable and
flexible alternative to random effects modeling of longitudinal data. There is also a
Matlab version (PACE) that contains some methods not available on fdapace and vice
versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626.
Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry).
References: Wang, J.L., Chiou, J., Müller, H.G. (2016)
Longitudinal Targeted Maximum Likelihood Estimation
Targeted Maximum Likelihood Estimation ('TMLE') of treatment/censoring specific mean outcome or marginal structural model for point-treatment and longitudinal data.
Processing and Analysing Animal Trajectories
Tools to handle, manipulate and explore trajectory data, with an emphasis on data from tracked animals. The package is designed to support large studies with several million location records and keep track of units where possible. Data import directly from 'movebank' < https://www.movebank.org/cms/movebank-main> and files is facilitated.
Tools for Linear Dimension Reduction
Linear dimension reduction subspaces can be uniquely defined using orthogonal projection matrices. This package provides tools to compute distances between such subspaces and to compute the average subspace. For details see Liski, E.Nordhausen K., Oja H., Ruiz-Gazen A. (2016) Combining Linear Dimension Reduction Subspaces
Spatio-Temporal Autologistic Regression Model
Estimates the coefficients of the two-time centered autologistic regression model based on Gegout-Petit A., Guerin-Dubrana L., Li S. "A new centered spatio-temporal autologistic regression model. Application to local spread of plant diseases." 2019.
AI-Driven Code Generation, Explanation and Execution for Data Analysis
Employing artificial intelligence to convert data analysis questions into executable code, explanations, and algorithms. The self-correction feature ensures the generated code is optimized for performance and accuracy. 'mergen' features a user-friendly chat interface, enabling users to interact with the AI agent and extract valuable insights from their data effortlessly.
Compare the Goodness of Fit of Benford's and Blondeau Da Silva's Digit Distributions to a Given Dataset
Allows to compare the goodness of fit of Benford's and Blondeau Da Silva's digit distributions in a dataset. It is used to check whether the data distribution is consistent with theoretical distributions highlighted by Blondeau Da Silva or not (through the dat.distr() function): this ideal theoretical distribution must be at least approximately followed by the data for the use of Blondeau Da Silva's model to be well-founded. It also enables to plot histograms of digit distributions, both observed in the dataset and given by the two theoretical approaches (with the digit.ditr() function). Finally, it proposes to quantify the goodness of fit via Pearson's chi-squared test (with the chi2() function).
Longitudinal Graphical Lasso
For high-dimensional correlated observations, this package carries out the L_1 penalized maximum likelihood
estimation of the precision matrix (network) and the correlation parameters. The correlated data can be
longitudinal data (may be irregularly spaced) with dampening correlation or clustered data with uniform correlation.
For the details of the algorithms, please see the paper Jie Zhou et al. Identifying Microbial Interaction Networks Based on Irregularly Spaced
Longitudinal 16S rRNA sequence data
Yeast-Proteome Secondary-Structure Calculator
An extension for 'NetSurfP-2.0' (Klausen et al. (2019)