Found 86 packages in 0.01 seconds
Poly-Omic Prediction of Complex TRaits
It provides functions to generate a correlation matrix from a genetic dataset and to use this matrix to predict the phenotype of an individual by using the phenotypes of the remaining individuals through kriging. Kriging is a geostatistical method for optimal prediction or best unbiased linear prediction. It consists of predicting the value of a variable at an unobserved location as a weighted sum of the variable at observed locations. Intuitively, it works as a reverse linear regression: instead of computing correlation (univariate regression coefficients are simply scaled correlation) between a dependent variable Y and independent variables X, it uses known correlation between X and Y to predict Y.
Power Analysis for Meta-Analysis
A simple and effective tool for computing and visualizing statistical power for meta-analysis,
including power analysis of main effects (Jackson & Turner, 2017)
Generating Summaries, Reports and Plots from the World Checklist of Vascular Plants
A companion to the World Checklist of Vascular Plants (WCVP). It includes functions to generate maps and species lists, as well as match names to the WCVP. For more details and to cite the package, see: Brown M.J.M., Walker B.E., Black N., Govaerts R., Ondo I., Turner R., Nic Lughadha E. (in press). "rWCVP: A companion R package to the World Checklist of Vascular Plants". New Phytologist.
Search Algorithms and Loss Functions for Bayesian Clustering
The SALSO algorithm is an efficient randomized greedy search method to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. The algorithm is implemented for many loss functions, including the Binder loss and a generalization of the variation of information loss, both of which allow for unequal weights on the two types of clustering mistakes. Efficient implementations are also provided for Monte Carlo estimation of the posterior expected loss of a given clustering estimate. See Dahl, Johnson, Müller (2022)
Epigenome-Wide Mediation Analysis Study
DNA methylation is essential for human, and environment can change the DNA methylation
and affect body status. Epigenome-Wide Mediation Analysis Study (EMAS) can find
potential mediator CpG sites between exposure (x) and outcome (y) in epigenome-wide.
For more information on the methods we used, please see the following references:
Tingley, D. (2014)
Linear Networks Functionality of the 'spatstat' Family
Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.
Software for Evaluating Counterfactuals
Inferences about counterfactuals are essential for prediction,
answering what if questions, and estimating causal effects.
However, when the counterfactuals posed are too far from the data at
hand, conclusions drawn from well-specified statistical analyses
become based largely on speculation hidden in convenient modeling
assumptions that few would be willing to defend. Unfortunately,
standard statistical approaches assume the veracity of the model
rather than revealing the degree of model-dependence, which makes this
problem hard to detect. WhatIf offers easy-to-apply methods to
evaluate counterfactuals that do not require sensitivity testing over
specified classes of models. If an analysis fails the tests offered
here, then we know that substantive inferences will be sensitive to at
least some modeling choices that are not based on empirical evidence,
no matter what method of inference one chooses to use. WhatIf
implements the methods for evaluating counterfactuals discussed in
Gary King and Langche Zeng, 2006, "The Dangers of Extreme
Counterfactuals," Political Analysis 14 (2)
Waiting List Metrics Using Queuing Theory
Waiting list management using queuing theory to analyse, predict and manage queues, based on the approach described in Fong et al. (2022)
Draw XmR Charts for NHS 'Making Data Count' Programme
Provides tools for drawing Statistical Process Control (SPC) charts. This package supports the NHS 'Making Data Count' programme, and allows users to draw XmR charts, use change points and apply rules with summary indicators for when rules are breached.
Toolkit for Reduced Form and Structural Smooth Transition Vector Autoregressive Models
Penalized and non-penalized maximum likelihood estimation of smooth
transition vector autoregressive models with various types of transition weight
functions, conditional distributions, and identification methods. Constrained
estimation with various types of constraints is available. Residual based
model diagnostics, forecasting, simulations, counterfactual analysis, and
computation of impulse response functions, generalized impulse response functions,
generalized forecast error variance decompositions, as well as historical
decompositions. See
Heather Anderson, Farshid Vahid (1998)