Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 188 packages in 0.03 seconds

CORElearn — by Marko Robnik-Sikonja, 6 months ago

Classification, Regression and Feature Evaluation

A suite of machine learning algorithms written in C++ with the R interface contains several learning techniques for classification and regression. Predictive models include e.g., classification and regression trees with optional constructive induction and models in the leaves, random forests, kNN, naive Bayes, and locally weighted regression. All predictions obtained with these models can be explained and visualized with the 'ExplainPrediction' package. This package is especially strong in feature evaluation where it contains several variants of Relief algorithm and many impurity based attribute evaluation functions, e.g., Gini, information gain, MDL, and DKM. These methods can be used for feature selection or discretization of numeric attributes. The OrdEval algorithm and its visualization is used for evaluation of data sets with ordinal features and class, enabling analysis according to the Kano model of customer satisfaction. Several algorithms support parallel multithreaded execution via OpenMP. The top-level documentation is reachable through ?CORElearn.

spdep — by Roger Bivand, 18 days ago

Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) , local 'Moran's I', 'Gearys C' ('Anselin' 1995) and 'Getis/Ord' G ('Ord' and 'Getis' 1995) , 'saddlepoint' approximations ('Tiefelsdorf' 2002) and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') . The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) , with further extensions in 'Bivand' (2022) . 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) , as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) . A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) and 'Bivand et al.' (2017) was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

extRemes — by Eric Gilleland, 5 months ago

Extreme Value Analysis

General functions for performing extreme value analysis. In particular, allows for inclusion of covariates into the parameters of the extreme-value distributions, as well as estimation through MLE, L-moments, generalized (penalized) MLE (GMLE), as well as Bayes. Inference methods include parametric normal approximation, profile-likelihood, Bayes, and bootstrapping. Some bivariate functionality and dependence checking (e.g., auto-tail dependence function plot, extremal index estimation) is also included. For a tutorial, see Gilleland and Katz (2016) and for bootstrapping, please see Gilleland (2020) .

quanteda.textmodels — by Kenneth Benoit, 3 months ago

Scaling Models and Classifiers for Textual Data

Scaling models and classifiers for sparse matrix objects representing textual data in the form of a document-feature matrix. Includes original implementations of 'Laver', 'Benoit', and Garry's (2003) , 'Wordscores' model, the Perry and 'Benoit' (2017) class affinity scaling model, and the 'Slapin' and 'Proksch' (2008) 'wordfish' model, as well as methods for correspondence analysis, latent semantic analysis, and fast Naive Bayes and linear 'SVMs' specially designed for sparse textual data.

BAMMtools — by Pascal Title, 8 months ago

Analysis and Visualization of Macroevolutionary Dynamics on Phylogenetic Trees

Provides functions for analyzing and visualizing complex macroevolutionary dynamics on phylogenetic trees. It is a companion package to the command line program BAMM (Bayesian Analysis of Macroevolutionary Mixtures) and is entirely oriented towards the analysis, interpretation, and visualization of evolutionary rates. Functionality includes visualization of rate shifts on phylogenies, estimating evolutionary rates through time, comparing posterior distributions of evolutionary rates across clades, comparing diversification models using Bayes factors, and more.

updog — by David Gerard, a year ago

Flexible Genotyping for Polyploids

Implements empirical Bayes approaches to genotype polyploids from next generation sequencing data while accounting for allele bias, overdispersion, and sequencing error. The main functions are flexdog() and multidog(), which allow the specification of many different genotype distributions. Also provided are functions to simulate genotypes, rgeno(), and read-counts, rflexdog(), as well as functions to calculate oracle genotyping error rates, oracle_mis(), and correlation with the true genotypes, oracle_cor(). These latter two functions are useful for read depth calculations. Run browseVignettes(package = "updog") in R for example usage. See Gerard et al. (2018) and Gerard and Ferrao (2020) for details on the implemented methods.

AdaptGauss — by Michael Thrun, a year ago

Gaussian Mixture Models (GMM)

Multimodal distributions can be modelled as a mixture of components. The model is derived using the Pareto Density Estimation (PDE) for an estimation of the pdf. PDE has been designed in particular to identify groups/classes in a dataset. Precise limits for the classes can be calculated using the theorem of Bayes. Verification of the model is possible by QQ plot, Chi-squared test and Kolmogorov-Smirnov test. The package is based on the publication of Ultsch, A., Thrun, M.C., Hansen-Goos, O., Lotsch, J. (2015) .

radiant.model — by Vincent Nijs, 7 months ago

Model Menu for Radiant: Business Analytics using R and Shiny

The Radiant Model menu includes interfaces for linear and logistic regression, naive Bayes, neural networks, classification and regression trees, model evaluation, collaborative filtering, decision analysis, and simulation. The application extends the functionality in 'radiant.data'.

discrim — by Emil Hvitfeldt, 2 years ago

Model Wrappers for Discriminant Analysis

Bindings for additional classification models for use with the 'parsnip' package. Models include flavors of discriminant analysis, such as linear (Fisher (1936) ), regularized (Friedman (1989) ), and flexible (Hastie, Tibshirani, and Buja (1994) ), as well as naive Bayes classifiers (Hand and Yu (2007) ).

repfdr — by Ruth Heller, 8 years ago

Replicability Analysis for Multiple Studies of High Dimension

Estimation of Bayes and local Bayes false discovery rates for replicability analysis (Heller & Yekutieli, 2014 ; Heller at al., 2015 ).