Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 110 packages in 0.01 seconds

HistogramTools — by Murray Stokely, 11 years ago

Utility Functions for R Histograms

Provides a number of utility functions useful for manipulating large histograms. This includes methods to trim, subset, merge buckets, merge histograms, convert to CDF, and calculate information loss due to binning. It also provides a protocol buffer representations of the default R histogram class to allow histograms over large data sets to be computed and manipulated in a MapReduce environment.

ctbi — by Francois Ritter, 3 years ago

A Procedure to Clean, Decompose and Aggregate Timeseries

Clean, decompose and aggregate univariate time series following the procedure "Cyclic/trend decomposition using bin interpolation" and the Logbox method for flagging outliers, both detailed in Ritter, F.: Technical note: A procedure to clean, decompose, and aggregate time series, Hydrol. Earth Syst. Sci., 27, 349–361, , 2023.

publipha — by Jonas Moss, 3 years ago

Bayesian Meta-Analysis with Publications Bias and P-Hacking

Tools for Bayesian estimation of meta-analysis models that account for publications bias or p-hacking. For publication bias, this package implements a variant of the p-value based selection model of Hedges (1992) with discrete selection probabilities. It also implements the mixture of truncated normals model for p-hacking described in Moss and De Bin (2019) .

statisfactory — by Adam B. Smith, 2 years ago

Statistical and Geometrical Tools

A collection of statistical and geometrical tools including the aligned rank transform (ART; Higgins et al. 1990 ; Peterson 2002 ; Wobbrock et al. 2011 ), 2-D histograms and histograms with overlapping bins, a function for making all possible formulae within a set of constraints, amongst others.

CollapseLevels — by Krishanu Mukherjee, 6 years ago

Collapses Levels, Computes Information Value and WoE

Contains functions to help in selecting and exploring features ( or variables ) in binary classification problems. Provides functions to compute and display information value and weight of evidence (WoE) of the variables , and to convert numeric variables to categorical variables by binning. Functions are also provided to determine which levels ( or categories ) of a categorical variable can be collapsed (or combined ) based on their response rates. The functions provided only work for binary classification problems.

socialh — by Julia de Paula Soares Valente, 3 years ago

Rank and Social Hierarchy for Gregarious Animals

Tools developed to facilitate the establishment of the rank and social hierarchy for gregarious animals by the Si method developed by Kondo & Hurnik (1990). It is also possible to determine the number of agonistic interactions between two individuals, sociometric and dyadics matrix from dataset obtained through electronic bins. In addition, it is possible plotting the results using a bar plot, box plot, and sociogram.

bunching — by Panos Mavrokonstantis, 3 years ago

Estimate Bunching

Implementation of the bunching estimator for kinks and notches. Allows for flexible estimation of counterfactual (e.g. controlling for round number bunching, accounting for other bunching masses within bunching window, fixing bunching point to be minimum, maximum or median value in its bin, etc.). It produces publication-ready plots in the style followed since Chetty et al. (2011) , with lots of functionality to set plot options.

aLBI — by Ataher Ali, a month ago

Estimating Length-Based Indicators for Fish Stock

Provides tools for estimating length-based indicators from length frequency data to assess fish stock status and manage fisheries sustainably. Implements methods from Cope and Punt (2009) for data-limited stock assessment and Froese (2004) for detecting overfishing using simple indicators. Key functions include: FrequencyTable(): Calculate the frequency table from the collected and also the extract the length frequency data from the frequency table with the upper length_range. A numeric value specifying the bin width for class intervals. If not provided, the bin width is automatically calculated using Wang (2020) formula. FreqTM(): Creates a frequency distribution table for fish length data across multiple months using a consistent length class structure. The bin width is determined by either a custom value or Wang's formula, applied uniformly across all months. The function dynamically detects and renames columns to 'Month' and 'Length' from the input dataframe. The maximum observed length is included as part of the last class, with the upper bound set to the smallest multiple of the bin width greater than or equal to the maximum length. Months can be converted to dates using a configurable day and year, with dates assigned sequentially in 'day.month.year' format (e.g., 15.01.26). FishPar(): Calculates length-based indicators (LBIs) proposed by Froese (2004) such as the percentage of mature fish (Pmat), percentage of optimal length fish (Popt), percentage of mega spawners (Pmega), and the sum of these as Pobj. This function also estimates confidence intervals for different lengths, visualizes length frequency distributions, and provides data frames containing calculated values. FishSS(): Makes decisions based on input from Cope and Punt (2009) and parameters calculated by FishPar() (e.g., Pobj, Pmat, Popt, LM_ratio) to determine stock status as target spawning biomass (TSB40) and limit spawning biomass (LSB25), and selectivity. LWR(): Fits and visualizes length-weight relationships using linear regression, with options for log-transformation and customizable plotting.

lacunr — by Elliott Smeds, 6 months ago

Fast 3D Lacunarity for Voxel Data

Calculates 3D lacunarity from voxel data. It is designed for use with point clouds generated from Light Detection And Ranging (LiDAR) scans in order to measure the spatial heterogeneity of 3-dimensional structures such as forest stands. It provides fast 'C++' functions to efficiently bin point cloud data into voxels and calculate lacunarity using different variants of the gliding-box algorithm originated by Allain & Cloitre (1991) .

GenWin — by Timothy M. Beissinger, 3 years ago

Spline Based Window Boundaries for Genomic Analyses

Defines window or bin boundaries for the analysis of genomic data. Boundaries are based on the inflection points of a cubic smoothing spline fitted to the raw data. Along with defining boundaries, a technique to evaluate results obtained from unequally-sized windows is provided. Applications are particularly pertinent for, though not limited to, genome scans for selection based on variability between populations (e.g. using Wright's fixations index, Fst, which measures variability in subpopulations relative to the total population).