Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 86 packages in 0.01 seconds

EMAS — by Xiuquan Nie, 3 years ago

Epigenome-Wide Mediation Analysis Study

DNA methylation is essential for human, and environment can change the DNA methylation and affect body status. Epigenome-Wide Mediation Analysis Study (EMAS) can find potential mediator CpG sites between exposure (x) and outcome (y) in epigenome-wide. For more information on the methods we used, please see the following references: Tingley, D. (2014) , Turner, S. D. (2018) , Rosseel, D. (2012) .

NHSRwaitinglist — by Chris Mainey, 10 days ago

Waiting List Metrics Using Queuing Theory

Waiting list management using queuing theory to analyse, predict and manage queues, based on the approach described in Fong et al. (2022) . Aimed at UK National Health Service (NHS) applications, waiting list summary statistics, target-value calculations, waiting list simulation, and scheduling functions are included.

salso — by David B. Dahl, a month ago

Search Algorithms and Loss Functions for Bayesian Clustering

The SALSO algorithm is an efficient randomized greedy search method to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. The algorithm is implemented for many loss functions, including the Binder loss and a generalization of the variation of information loss, both of which allow for unequal weights on the two types of clustering mistakes. Efficient implementations are also provided for Monte Carlo estimation of the posterior expected loss of a given clustering estimate. See Dahl, Johnson, Müller (2022) .

WhatIf — by Soubhik Barari, 4 years ago

Software for Evaluating Counterfactuals

Inferences about counterfactuals are essential for prediction, answering what if questions, and estimating causal effects. However, when the counterfactuals posed are too far from the data at hand, conclusions drawn from well-specified statistical analyses become based largely on speculation hidden in convenient modeling assumptions that few would be willing to defend. Unfortunately, standard statistical approaches assume the veracity of the model rather than revealing the degree of model-dependence, which makes this problem hard to detect. WhatIf offers easy-to-apply methods to evaluate counterfactuals that do not require sensitivity testing over specified classes of models. If an analysis fails the tests offered here, then we know that substantive inferences will be sensitive to at least some modeling choices that are not based on empirical evidence, no matter what method of inference one chooses to use. WhatIf implements the methods for evaluating counterfactuals discussed in Gary King and Langche Zeng, 2006, "The Dangers of Extreme Counterfactuals," Political Analysis 14 (2) ; and Gary King and Langche Zeng, 2007, "When Can History Be Our Guide? The Pitfalls of Counterfactual Inference," International Studies Quarterly 51 (March) .

sstvars — by Savi Virolainen, 9 days ago

Toolkit for Reduced Form and Structural Smooth Transition Vector Autoregressive Models

Penalized and non-penalized maximum likelihood estimation of smooth transition vector autoregressive models with various types of transition weight functions, conditional distributions, and identification methods. Constrained estimation with various types of constraints is available. Residual based model diagnostics, forecasting, simulations, counterfactual analysis, and computation of impulse response functions, generalized impulse response functions, generalized forecast error variance decompositions, as well as historical decompositions. See Heather Anderson, Farshid Vahid (1998) , Helmut Lütkepohl, Aleksei Netšunajev (2017) , Markku Lanne, Savi Virolainen (2025) , Savi Virolainen (2025) .

ssdtools — by Joe Thorley, 3 months ago

Species Sensitivity Distributions

Species sensitivity distributions are cumulative probability distributions which are fitted to toxicity concentrations for different species as described by Posthuma et al.(2001) . The ssdtools package uses Maximum Likelihood to fit distributions such as the gamma, log-logistic, log-normal and log-normal log-normal mixture. Multiple distributions can be averaged using Akaike Information Criteria. Confidence intervals on hazard concentrations and proportions are produced by bootstrapping.

spatstat.univar — by Adrian Baddeley, a day ago

One-Dimensional Probability Distribution Support for the 'spatstat' Family

Estimation of one-dimensional probability distributions including kernel density estimation, weighted empirical cumulative distribution functions, Kaplan-Meier and reduced-sample estimators for right-censored data, heat kernels, kernel properties, quantiles and integration.

dataCompareR — by Sarah Johnston, 3 years ago

Compare Two Data Frames and Summarise the Difference

Easy comparison of two tabular data objects in R. Specifically designed to show differences between two sets of data in a useful way that should make it easier to understand the differences, and if necessary, help you work out how to remedy them. Aims to offer a more useful output than all.equal() when your two data sets do not match, but isn't intended to replace all.equal() as a way to test for equality.

maptools — by Roger Bivand, 2 years ago

Tools for Handling Spatial Objects

Please note that 'maptools' will be retired during October 2023, plan transition at your earliest convenience (see < https://r-spatial.org/r/2023/05/15/evolution4.html> and earlier blogs for guidance); some functionality will be moved to 'sp'. Set of tools for manipulating geographic data. The package also provides interface wrappers for exchanging spatial objects with packages such as 'PBSmapping', 'spatstat.geom', 'maps', and others.

shipunov — by ORPHANED, 2 years ago

Miscellaneous Functions from Alexey Shipunov

A collection of functions for data manipulation, plotting and statistical computing, to use separately or with the book "Visual Statistics. Use R!": Shipunov (2020) < http://ashipunov.info/shipunov/software/r/r-en.htm>. Dr Alexey Shipunov died in December 2022. Most useful functions: Bclust(), Jclust() and BootA() which bootstrap hierarchical clustering; Recode() which does multiple recoding in a fast, simple and flexible way; Misclass() which outputs confusion matrix even if classes are not concerted; Overlap() which measures group separation on any projection; Biarrows() which converts any scatterplot into biplot; and Pleiad() which is fast and flexible correlogram.