Found 497 packages in 0.01 seconds
Nonlinear Regression for Agricultural Applications
Additional nonlinear regression functions using self-start (SS) algorithms. One of the functions is the Beta growth function proposed by Yin et al. (2003)
Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks
Implementation of the following methods for event history analysis. Risk regression models for survival endpoints also in the presence of competing risks are fitted using binomial regression based on a time sequence of binary event status variables. A formula interface for the Fine-Gray regression model and an interface for the combination of cause-specific Cox regression models. A toolbox for assessing and comparing performance of risk predictions (risk markers and risk prediction models). Prediction performance is measured by the Brier score and the area under the ROC curve for binary possibly time-dependent outcome. Inverse probability of censoring weighting and pseudo values are used to deal with right censored data. Lists of risk markers and lists of risk models are assessed simultaneously. Cross-validation repeatedly splits the data, trains the risk prediction models on one part of each split and then summarizes and compares the performance across splits.
Utilities from 'Seminar fuer Statistik' ETH Zurich
Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().
Analysis of Quaternary Science Data
Constrained clustering, transfer functions, and other methods for analysing Quaternary science data.
Tools for the Analysis of Air Pollution Data
Tools to analyse, interpret and understand air pollution
data. Data are typically regular time series and air quality
measurement, meteorological data and dispersion model output can be
analysed. The package is described in Carslaw and Ropkins (2012,
Density, Probability, Quantile ('DPQ') Computations
Computations for approximations and alternatives for the 'DPQ'
(Density (pdf), Probability (cdf) and Quantile) functions for probability
distributions in R.
Primary focus is on (central and non-central) beta, gamma and related
distributions such as the chi-squared, F, and t.
--
For several distribution functions, provide functions implementing formulas from
Johnson, Kotz, and Kemp (1992)
Generalised Additive Extreme Value Models
Methods for fitting various extreme value distributions with parameters of
generalised additive model (GAM) form are provided. For details of distributions
see Coles, S.G. (2001)
Gradient-Based Coenospace Vegetation Simulator
Simulates the composition of samples of vegetation according to gradient-based vegetation theory. Features a flexible algorithm incorporating competition and complex multi-gradient interaction.
Time-Varying Effect Models
Fits time-varying effect models (TVEM). These are a kind of application of varying-coefficient models in the context of longitudinal data, allowing the strength of linear, logistic, or Poisson regression relationships to change over time. These models are described further in Tan, Shiyko, Li, Li & Dierker (2012)
Nonlinear Time Series Models with Regime Switching
Implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).