Found 7305 packages in 0.02 seconds
Automated Estimation of Sigmoidal and Piecewise Linear Mixed Models
Estimation of relatively complex nonlinear mixed-effects models, including the Sigmoidal Mixed Model and the Piecewise Linear Mixed Model with abrupt or smooth transition, through a single intuitive line of code and with automated generation of starting values.
Learning and Communicating Linear Mixed Models Without Data
Summarizes characteristics of linear mixed effects models without data or a fitted model by converting code for fitting lmer() from 'lme4' and lme() from 'nlme' into tables, equations, and visuals. Outputs can be used to learn how to fit linear mixed effects models in 'R' and to communicate about these models in presentations, manuscripts, and analysis plans.
Linear Mixed Models - An Introduction with Applications in Veterinary Research
R Codes and Datasets for Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.
Post-Estimation Functions for Generalized Linear Mixed Models
Several functions for working with mixed effects regression models for limited dependent variables. The functions facilitate post-estimation of model predictions or margins, and comparisons between model predictions for assessing or probing moderation. Additional helper functions facilitate model comparisons and implements simulation-based inference for model predictions of alternative-specific outcome models. See also, Melamed and Doan (2024, ISBN: 978-1032509518).
Fast Fitting of Stable Isotope Mixing Models with Covariates
Fast fitting of Stable Isotope Mixing Models in R. Allows for the inclusion of covariates. Also has built-in summary functions and plot functions which allow for the creation of isospace plots. Variational Bayes is used to fit these models, methods as described in: Tran et al., (2021)
Maximum Likelihood Estimation for Generalized Linear Mixed Models
Maximum likelihood estimation for generalized linear mixed models via Monte Carlo EM.
For a description of the algorithm see Brian S. Caffo, Wolfgang Jank and Galin L. Jones (2005)
Mixed Model Association Test for GEne-Environment Interaction
Use a 'glmmkin' class object (GMMAT package) from the null model to perform generalized linear mixed model-based single-variant and variant set main effect tests, gene-environment interaction tests, and joint tests for association, as proposed in Wang et al. (2020)
Scale Mixture of Skew-Normal Linear Mixed Models
It fits scale mixture of skew-normal linear mixed models using either an expectation–maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence. Details can be found in Schumacher, Lachos and Matos (2021)
Estimate (Generalized) Linear Mixed Models with Factor Structures
Utilizes the 'lme4' and 'optimx' packages (previously the optim()
function from 'stats') to estimate (generalized) linear mixed models (GLMM)
with factor structures using a profile likelihood approach, as outlined in
Jeon and Rabe-Hesketh (2012)
Robust Bayesian Longitudinal Regularized Semiparametric Mixed Models
Our recently developed fully robust Bayesian semiparametric mixed-effect model for high-dimensional longitudinal studies with heterogeneous observations can be implemented through this package. This model can distinguish between time-varying interactions and constant-effect-only cases to avoid model misspecifications. Facilitated by spike-and-slab priors, this model leads to superior performance in estimation, identification and statistical inference. In particular, robust Bayesian inferences in terms of valid Bayesian credible intervals on both parametric and nonparametric effects can be validated on finite samples. The Markov chain Monte Carlo algorithms of the proposed and alternative models are efficiently implemented in 'C++'.