Found 8325 packages in 0.01 seconds
Bindings for Bayesian TidyModels
Fit Bayesian models using 'brms'/'Stan' with 'parsnip'/'tidymodels'
via 'bayesian'
Markov Chain Monte Carlo (MCMC) Package
Contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library Version 1.0.3. All models return 'coda' mcmc objects that can then be summarized using the 'coda' package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided.
Political Science Computational Laboratory
Bayesian analysis of item-response theory (IRT) models, roll call analysis; computing highest density regions; maximum likelihood estimation of zero-inflated and hurdle models for count data; goodness-of-fit measures for GLMs; data sets used in writing and teaching; seats-votes curves.
Tidy Data and 'Geoms' for Bayesian Models
Compose data for and extract, manipulate, and visualize posterior draws from Bayesian models ('JAGS', 'Stan', 'rstanarm', 'brms', 'MCMCglmm', 'coda', ...) in a tidy data format. Functions are provided to help extract tidy data frames of draws from Bayesian models and that generate point summaries and intervals in a tidy format. In addition, 'ggplot2' 'geoms' and 'stats' are provided for common visualization primitives like points with multiple uncertainty intervals, eye plots (intervals plus densities), and fit curves with multiple, arbitrary uncertainty bands.
Mixed GAM Computation Vehicle with Automatic Smoothness Estimation
Generalized additive (mixed) models, some of their extensions and
other generalized ridge regression with multiple smoothing
parameter estimation by (Restricted) Marginal Likelihood,
Cross Validation and similar, or using iterated nested Laplace
approximation for fully Bayesian inference. See Wood (2025)
Multivariate Normal and t Distributions
Computes multivariate normal and t probabilities, quantiles, random deviates, and densities. Log-likelihoods for multivariate Gaussian models and Gaussian copulae parameterised by Cholesky factors of covariance or precision matrices are implemented for interval-censored and exact data, or a mix thereof. Score functions for these log-likelihoods are available. A class representing multiple lower triangular matrices and corresponding methods are part of this package.
Tools for Working with Posterior Distributions
Provides useful tools for both users and developers of packages
for fitting Bayesian models or working with output from Bayesian models.
The primary goals of the package are to:
(a) Efficiently convert between many different useful formats of
draws (samples) from posterior or prior distributions.
(b) Provide consistent methods for operations commonly performed on draws,
for example, subsetting, binding, or mutating draws.
(c) Provide various summaries of draws in convenient formats.
(d) Provide lightweight implementations of state of the art posterior
inference diagnostics. References: Vehtari et al. (2021)
Linear Mixed-Effects Models using 'Eigen' and S4
Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".
Bayesian Additive Regression Trees
Bayesian Additive Regression Trees (BART) provide flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event outcomes. For more information see Sparapani, Spanbauer and McCulloch
Using R to Run 'JAGS'
Providing wrapper functions to implement Bayesian analysis in JAGS. Some major features include monitoring convergence of a MCMC model using Rubin and Gelman Rhat statistics, automatically running a MCMC model till it converges, and implementing parallel processing of a MCMC model for multiple chains.