Found 110 packages in 0.01 seconds
Tools for Poisson Data
Functions used for analyzing count data, mostly crime counts. Includes checking difference in two Poisson counts (e-test), checking the fit for a Poisson distribution, small sample tests for counts in bins, Weighted Displacement Difference test (Wheeler and Ratcliffe, 2018)
Ecometric Models of Trait–Environment Relationships at the Community Level
Provides a framework for modeling relationships between functional traits and both quantitative and qualitative environmental variables at the community level. It includes tools for trait binning, likelihood-based environmental estimation, model evaluation, fossil projection into modern ecometric space, and result visualization. For more details see Vermillion et al. (2018)
Visualization and Estimation of Effect Sizes
A variety of methods are provided to estimate and visualize
distributional differences in terms of effect sizes. Particular emphasis
is upon evaluating differences between two or more distributions across
the entire scale, rather than at a single point (e.g., differences in
means). For example, Probability-Probability (PP) plots display the
difference between two or more distributions, matched by their empirical
CDFs (see Ho and Reardon, 2012;
Retrieve, Transform and Analyze the Barcode of Life Data Systems Data
Facilitates retrieval, transformation and analysis of the data from the Barcode of Life Data Systems (BOLD) database < https://boldsystems.org/>. This package allows both public and private user data to be easily downloaded into the R environment using a variety of inputs such as: IDs (processid, sampleid), BINs, dataset codes, project codes, taxonomy, geography etc. It provides frictionless data conversion into formats compatible with other R-packages and third-party tools, as well as functions for sequence alignment & clustering, biodiversity analysis and spatial mapping.
'ggplot2' Version of "I'm Feeling Lucky!"
Examines the characteristics of a data frame and a formula to automatically choose the most suitable type of plot out of the following supported options: scatter, violin, box, bar, density, hexagon bin, spine plot, and heat map. The aim of the package is to let the user focus on what to plot, rather than on the "how" during exploratory data analysis. It also automates handling of observation weights, logarithmic axis scaling, reordering of factor levels, and overlaying smoothing curves and median lines. Plots are drawn using 'ggplot2'.
Nonparametric Spatial Statistics
Multidimensional nonparametric spatial (spatio-temporal) geostatistics.
S3 classes and methods for multidimensional: linear binning,
local polynomial kernel regression (spatial trend estimation), density and variogram estimation.
Nonparametric methods for simultaneous inference on both spatial trend
and variogram functions (for spatial processes).
Nonparametric residual kriging (spatial prediction).
For details on these methods see, for example, Fernandez-Casal and Francisco-Fernandez (2014)
Utilities for Working with Air Quality Monitoring Data
Utilities for working with air quality monitoring data with a focus on small particulates (PM2.5) generated by wildfire smoke. Functions are provided for downloading available data from the United States 'EPA' < https://www.epa.gov/outdoor-air-quality-data> and it's 'AirNow' air quality site < https://www.airnow.gov>. Additional sources of PM2.5 data made accessible by the package include: 'AIRSIS' (aka "Oceaneering", not public) and 'WRCC' < https://wrcc.dri.edu/cgi-bin/smoke.pl>. Data compilations are hosted by the USFS 'AirFire' research team < https://www.airfire.org>.
Credit Risk Scorecard
The `scorecard` package makes the development of credit risk scorecard easier and efficient by providing functions for some common tasks, such as data partition, variable selection, woe binning, scorecard scaling, performance evaluation and report generation. These functions can also used in the development of machine learning models. The references including: 1. Refaat, M. (2011, ISBN: 9781447511199). Credit Risk Scorecard: Development and Implementation Using SAS. 2. Siddiqi, N. (2006, ISBN: 9780471754510). Credit risk scorecards. Developing and Implementing Intelligent Credit Scoring.
Simple Method to Detect Compositional Changes in Genomic Sequences
This software is useful for loading '.fasta' or '.gbk' files, and for retrieving sequences from 'GenBank' dataset < https://www.ncbi.nlm.nih.gov/genbank/>. This package allows to detect differences or asymmetries based on nucleotide composition by using local linear kernel smoothers. Also, it is possible to draw inference about critical points (i. e. maximum or minimum points) related with the derivative curves. Additionally, bootstrap methods have been used for estimating confidence intervals and speed computational techniques (binning techniques) have been implemented in 'seq2R'.
Hilbert Similarity Index for High Dimensional Data
Quantifying similarity between high-dimensional single cell samples is challenging, and usually requires some simplifying hypothesis to be made. By transforming the high dimensional space into a high dimensional grid, the number of cells in each sub-space of the grid is characteristic of a given sample. Using a Hilbert curve each sample can be visualized as a simple density plot, and the distance between samples can be calculated from the distribution of cells using the Jensen-Shannon distance. Bins that correspond to significant differences between samples can identified using a simple bootstrap procedure.