Found 146 packages in 0.05 seconds
Multi-Gene Descent Probabilities
Do multi-gene descent probabilities
(Thompson, 1983,
Dynamic Linear Model for Wastewater-Based Epidemiology
Implement dynamic linear models outlined in Shumway and Stoffer (2025)
Superpixels of Spatial Data
Creates superpixels based on input spatial data.
This package works on spatial data with one variable (e.g., continuous raster), many variables (e.g., RGB rasters), and spatial patterns (e.g., areas in categorical rasters).
It is based on the SLIC algorithm (Achanta et al. (2012)
Uniformly Most Powerful Tests
Does uniformly most powerful (UMP) and uniformly most
powerful unbiased (UMPU) tests. At present only distribution implemented
is binomial distribution. Also does fuzzy tests and confidence intervals
(following Geyer and Meeden, 2005,
Generalized Linear Mixed Models via Monte Carlo Likelihood Approximation
Approximates the likelihood of a generalized linear mixed model using Monte Carlo likelihood approximation. Then maximizes the likelihood approximation to return maximum likelihood estimates, observed Fisher information, and other model information.
Object-Oriented Interface for Offline Change-Point Detection
A collection of efficient implementations of popular offline change-point detection algorithms, featuring a consistent, object-oriented interface for practical use.
R Client for 'Customer Journey Analytics' ('CJA') API
Connect and pull data from the 'CJA' API, which powers 'CJA Workspace' < https://github.com/AdobeDocs/cja-apis>. The package was developed with the analyst in mind and will continue to be developed with the guiding principles of iterative, repeatable, timely analysis. New features are actively being developed and we value your feedback and contribution to the process.
Simulating from the Polya Posterior
Simulate via Markov chain Monte Carlo (hit-and-run algorithm) a Dirichlet distribution conditioned to satisfy a finite set of linear equality and inequality constraints (hence to lie in a convex polytope that is a subset of the unit simplex).
Tools for Descriptive Statistics
A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently describing data. The author's intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel. Many of the included functions can be found scattered in other packages and other sources written partly by Titans of R. The reason for collecting them here, was primarily to have them consolidated in ONE instead of dozens of packages (which themselves might depend on other packages which are not needed at all), and to provide a common and consistent interface as far as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style guides were used as naming rules (in absence of convincing alternatives). The 'BigCamelCase' style was consequently applied to functions borrowed from contributed R packages as well.
R Client for 'Adobe Analytics' API 2.0
Connect to the 'Adobe Analytics' API v2.0 < https://github.com/AdobeDocs/analytics-2.0-apis> which powers 'Analysis Workspace'. The package was developed with the analyst in mind, and it will continue to be developed with the guiding principles of iterative, repeatable, timely analysis.