Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 473 packages in 0.09 seconds

tvem — by John J. Dziak, 2 years ago

Time-Varying Effect Models

Fits time-varying effect models (TVEM). These are a kind of application of varying-coefficient models in the context of longitudinal data, allowing the strength of linear, logistic, or Poisson regression relationships to change over time. These models are described further in Tan, Shiyko, Li, Li & Dierker (2012) . We thank Kaylee Litson, Patricia Berglund, Yajnaseni Chakraborti, and Hanjoo Kim for their valuable help with testing the package and the documentation. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

coenoflex — by David W. Roberts, 9 years ago

Gradient-Based Coenospace Vegetation Simulator

Simulates the composition of samples of vegetation according to gradient-based vegetation theory. Features a flexible algorithm incorporating competition and complex multi-gradient interaction.

bamlss — by Nikolaus Umlauf, 7 months ago

Bayesian Additive Models for Location, Scale, and Shape (and Beyond)

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) and the R package in Umlauf, Klein, Simon, Zeileis (2021) .

riskRegression — by Thomas Alexander Gerds, a year ago

Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks

Implementation of the following methods for event history analysis. Risk regression models for survival endpoints also in the presence of competing risks are fitted using binomial regression based on a time sequence of binary event status variables. A formula interface for the Fine-Gray regression model and an interface for the combination of cause-specific Cox regression models. A toolbox for assessing and comparing performance of risk predictions (risk markers and risk prediction models). Prediction performance is measured by the Brier score and the area under the ROC curve for binary possibly time-dependent outcome. Inverse probability of censoring weighting and pseudo values are used to deal with right censored data. Lists of risk markers and lists of risk models are assessed simultaneously. Cross-validation repeatedly splits the data, trains the risk prediction models on one part of each split and then summarizes and compares the performance across splits.

MFPCA — by Clara Happ-Kurz, 3 years ago

Multivariate Functional Principal Component Analysis for Data Observed on Different Dimensional Domains

Calculate a multivariate functional principal component analysis for data observed on different dimensional domains. The estimation algorithm relies on univariate basis expansions for each element of the multivariate functional data (Happ & Greven, 2018) . Multivariate and univariate functional data objects are represented by S4 classes for this type of data implemented in the package 'funData'. For more details on the general concepts of both packages and a case study, see Happ-Kurz (2020) .

VarSelLCM — by Mohammed Sedki, 5 years ago

Variable Selection for Model-Based Clustering of Mixed-Type Data Set with Missing Values

Full model selection (detection of the relevant features and estimation of the number of clusters) for model-based clustering (see reference here ). Data to analyze can be continuous, categorical, integer or mixed. Moreover, missing values can occur and do not necessitate any pre-processing. Shiny application permits an easy interpretation of the results.

mrds — by Laura Marshall, 7 months ago

Mark-Recapture Distance Sampling

Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.

gamair — by Simon Wood, 6 years ago

Data for 'GAMs: An Introduction with R'

Data sets and scripts used in the book 'Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.

RXshrink — by Bob Obenchain, 2 years ago

Maximum Likelihood Shrinkage using Generalized Ridge or Least Angle Regression

Functions are provided to calculate and display ridge TRACE Diagnostics for a variety of alternative Shrinkage Paths. While all methods focus on Maximum Likelihood estimation of unknown true effects under normal distribution-theory, some estimates are modified to be Unbiased or to have "Correct Range" when estimating either [1] the noncentrality of the F-ratio for testing that true Beta coefficients are Zeros or [2] the "relative" MSE Risk (i.e. MSE divided by true sigma-square, where the "relative" variance of OLS is known.) The eff.ridge() function implements the "Efficient Shrinkage Path" introduced in Obenchain (2022) . This "p-Parameter" Shrinkage-Path always passes through the vector of regression coefficient estimates Most-Likely to achieve the overall Optimal Variance-Bias Trade-Off and is the shortest Path with this property. Functions eff.aug() and eff.biv() augment the calculations made by eff.ridge() to provide plots of the bivariate confidence ellipses corresponding to any of the p*(p-1) possible ordered pairs of shrunken regression coefficients. Functions for plotting TRACE Diagnostics now have more options.

ctmcmove — by Ephraim Hanks, 4 months ago

Modeling Animal Movement with Continuous-Time Discrete-Space Markov Chains

Software to facilitates taking movement data in xyt format and pairing it with raster covariates within a continuous time Markov chain (CTMC) framework. As described in Hanks et al. (2015) , this allows flexible modeling of movement in response to covariates (or covariate gradients) with model fitting possible within a Poisson GLM framework.