Found 497 packages in 0.01 seconds
Multivariate Functional Principal Component Analysis for Data Observed on Different Dimensional Domains
Calculate a multivariate functional principal component analysis
for data observed on different dimensional domains. The estimation algorithm
relies on univariate basis expansions for each element of the multivariate
functional data (Happ & Greven, 2018)
Estimate Structured Additive Regression Models with 'BayesX'
An R interface to estimate structured additive regression (STAR) models with 'BayesX'.
Iterative Steps for Postprocessing Model Predictions
Postprocessors refine predictions outputted from machine
learning models to improve predictive performance or better satisfy
distributional limitations. This package introduces 'tailor' objects,
which compose iterative adjustments to model predictions. A number of
pre-written adjustments are provided with the package, such as
calibration. See Lichtenstein, Fischhoff, and Phillips (1977)
Data for 'GAMs: An Introduction with R'
Data sets and scripts used in the book 'Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.
Create Contour Plots from Data or a Function
Provides functions for making contour plots. The contour plot can be created from grid data, a function, or a data set. If non-grid data is given, then a Gaussian process is fit to the data and used to create the contour plot.
Mark-Recapture Distance Sampling
Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.
Data Analysis and Graphics Data and Functions
Functions and data sets used in examples and exercises in the text Maindonald, J.H. and Braun, W.J. (2003, 2007, 2010) "Data Analysis and Graphics Using R", and in an upcoming Maindonald, Braun, and Andrews text that builds on this earlier text.
Nonparametric Preprocessing for Parametric Causal Inference
Selects matched samples of the original treated and
control groups with similar covariate distributions -- can be
used to match exactly on covariates, to match on propensity
scores, or perform a variety of other matching procedures. The
package also implements a series of recommendations offered in
Ho, Imai, King, and Stuart (2007)
Bayesian Additive Models for Location, Scale, and Shape (and Beyond)
Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework.
The distribution parameters may capture location, scale, shape, etc. and every parameter may depend
on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model.
The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019)
Miscellaneous Functions for Working with 'stars' Rasters
Miscellaneous functions for working with 'stars' objects, mainly single-band rasters. Currently includes functions for: (1) focal filtering, (2) detrending of Digital Elevation Models, (3) calculating flow length, (4) calculating the Convergence Index, (5) calculating topographic aspect and topographic slope.