Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 7856 packages in 0.09 seconds

BayesRGMM — by Kuo-Jung Lee, 4 years ago

Bayesian Robust Generalized Mixed Models for Longitudinal Data

To perform model estimation using MCMC algorithms with Bayesian methods for incomplete longitudinal studies on binary and ordinal outcomes that are measured repeatedly on subjects over time with drop-outs. Details about the method can be found in the vignette or < https://sites.google.com/view/kuojunglee/r-packages/bayesrgmm>.

GLMMcosinor — by Rex Parsons, a year ago

Fit a Cosinor Model Using a Generalized Mixed Modeling Framework

Allows users to fit a cosinor model using the 'glmmTMB' framework. This extends on existing cosinor modeling packages, including 'cosinor' and 'circacompare', by including a wide range of available link functions and the capability to fit mixed models. The cosinor model is described by Cornelissen (2014) .

glmmTMB — by Mollie Brooks, 14 hours ago

Generalized Linear Mixed Models using Template Model Builder

Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.

lcmm — by Cecile Proust-Lima, 2 months ago

Extended Mixed Models Using Latent Classes and Latent Processes

Estimation of various extensions of the mixed models including latent class mixed models, joint latent class mixed models, mixed models for curvilinear outcomes, mixed models for multivariate longitudinal outcomes using a maximum likelihood estimation method (Proust-Lima, Philipps, Liquet (2017) ).

ProfileGLMM — by Matteo Amestoy, a month ago

Bayesian Profile Regression using Generalised Linear Mixed Models

Implements a Bayesian profile regression using a generalized linear mixed model as output model. The package allows for binary (probit mixed model) and continuous (linear mixed model) outcomes and both continuous and categorical clustering variables. The package utilizes 'RcppArmadillo' and 'RcppDist' for high-performance statistical computing in C++. For more details see Amestoy & al. (2025) .

gammSlice — by Matt P. Wand, 7 years ago

Generalized Additive Mixed Model Analysis via Slice Sampling

Uses a slice sampling-based Markov chain Monte Carlo to conduct Bayesian fitting and inference for generalized additive mixed models. Generalized linear mixed models and generalized additive models are also handled as special cases of generalized additive mixed models. The methodology and software is described in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand Journal of Statistics, 60, 279-330 .

glmmEP — by Matt P. Wand, 6 years ago

Generalized Linear Mixed Model Analysis via Expectation Propagation

Approximate frequentist inference for generalized linear mixed model analysis with expectation propagation used to circumvent the need for multivariate integration. In this version, the random effects can be any reasonable dimension. However, only probit mixed models with one level of nesting are supported. The methodology is described in Hall, Johnstone, Ormerod, Wand and Yu (2018) .

IsoriX — by Alexandre Courtiol, 2 days ago

Isoscape Computation and Inference of Spatial Origins using Mixed Models

Building isoscapes using mixed models and inferring the geographic origin of samples based on their isotopic ratios. This package is essentially a simplified interface to several other packages which implements a new statistical framework based on mixed models. It uses 'spaMM' for fitting and predicting isoscapes, and assigning an organism's origin depending on its isotopic ratio. 'IsoriX' also relies heavily on the package 'rasterVis' for plotting the maps produced with 'terra' using 'lattice'.

glmmSeq — by Myles Lewis, 3 months ago

General Linear Mixed Models for Gene-Level Differential Expression

Using mixed effects models to analyse longitudinal gene expression can highlight differences between sample groups over time. The most widely used differential gene expression tools are unable to fit linear mixed effect models, and are less optimal for analysing longitudinal data. This package provides negative binomial and Gaussian mixed effects models to fit gene expression and other biological data across repeated samples. This is particularly useful for investigating changes in RNA-Sequencing gene expression between groups of individuals over time, as described in: Rivellese, F., Surace, A. E., Goldmann, K., Sciacca, E., Cubuk, C., Giorli, G., ... Lewis, M. J., & Pitzalis, C. (2022) Nature medicine .

fastLaplace — by Sangwan Lee, 5 years ago

A Fast Laplace Method for Spatial Generalized Linear Mixed Model

Fitting a fast Laplace approximation for Spatial Generalized Linear Mixed Model as described in Park and Lee (2021) < https://github.com/sangwan93/fastLaplace/blob/main/FastLaplaceMain.pdf>.