Found 2054 packages in 0.01 seconds
Ridgeline Plots in 'ggplot2'
Ridgeline plots provide a convenient way of visualizing changes in distributions over time or space. This package enables the creation of such plots in 'ggplot2'.
A Collection of Database, Data Structure, Visualization, and Utility Functions for R
The caroline R library contains dozens of functions useful for: database migration (dbWriteTable2), database style joins & aggregation (nerge, groupBy, & bestBy), data structure conversion (nv, tab2df), legend table making (sstable & leghead), automatic legend positioning for scatter and box plots (), plot annotation (labsegs & mvlabs), data visualization (pies, sparge, confound.grid & raPlot), character string manipulation (m & pad), file I/O (write.delim), batch scripting, data exploration, and more. The package's greatest contributions lie in the database style merge, aggregation and interface functions as well as in it's extensive use and propagation of row, column and vector names in most functions.
Tools to Visualize, Manipulate, and Summarize MCMC Output
Performs key functions for MCMC analysis using minimal code - visualizes, manipulates, and summarizes MCMC output. Functions support simple and straightforward subsetting of model parameters within the calls, and produce presentable and 'publication-ready' output. MCMC output may be derived from Bayesian model output fit with 'Stan', 'NIMBLE', 'JAGS', and other software.
Statistical Rank Aggregation: Inference, Evaluation, and Visualization
A set of methods to implement Generalized Method of Moments and Maximal Likelihood methods for Random Utility Models. These methods are meant to provide inference on rank comparison data. These methods accept full, partial, and pairwise rankings, and provides methods to break down full or partial rankings into their pairwise components. Please see Generalized Method-of-Moments for Rank Aggregation from NIPS 2013 for a description of some of our methods.
Credible Visualization for Two-Dimensional Projections of Data
Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018]
Extending 'dendrogram' Functionality in R
Offers a set of functions for extending 'dendrogram' objects in R, letting you visualize and compare trees of 'hierarchical clusterings'. You can (1) Adjust a tree's graphical parameters - the color, size, type, etc of its branches, nodes and labels. (2) Visually and statistically compare different 'dendrograms' to one another.
Signal Processing
A set of signal processing functions originally written for 'Matlab' and 'Octave'. Includes filter generation utilities, filtering functions, resampling routines, and visualization of filter models. It also includes interpolation functions.
Interactive Visualization of Topic Models
Tools to create an interactive web-based visualization of a topic model that has been fit to a corpus of text data using Latent Dirichlet Allocation (LDA). Given the estimated parameters of the topic model, it computes various summary statistics as input to an interactive visualization built with D3.js that is accessed via a browser. The goal is to help users interpret the topics in their LDA topic model.
Visualising Sets of Ontological Terms
Create R plots visualising ontological terms and the relationships between them with various graphical options - Greene et al. 2017
Network Dynamic Temporal Visualizations
Renders dynamic network data from 'networkDynamic' objects as movies, interactive animations, or other representations of changing relational structures and attributes.