Found 2300 packages in 0.05 seconds
Visualization of Functional Analysis Data
Implementation of multilayered visualizations for enhanced graphical representation of functional analysis data. It combines and integrates omics data derived from expression and functional annotation enrichment analyses. Its plotting functions have been developed with an hierarchical structure in mind: starting from a general overview to identify the most enriched categories (modified bar plot, bubble plot) to a more detailed one displaying different types of relevant information for the molecules in a given set of categories (circle plot, chord plot, cluster plot, Venn diagram, heatmap).
Network Dynamic Temporal Visualizations
Renders dynamic network data from 'networkDynamic' objects as movies, interactive animations, or other representations of changing relational structures and attributes.
Create Waffle Chart Visualizations
Square pie charts (a.k.a. waffle charts) can be used to communicate parts of a whole for categorical quantities. To emulate the percentage view of a pie chart, a 10x10 grid should be used with each square representing 1% of the total. Modern uses of waffle charts do not necessarily adhere to this rule and can be created with a grid of any rectangular shape. Best practices suggest keeping the number of categories small, just as should be done when creating pie charts. Tools are provided to create waffle charts as well as stitch them together, and to use glyphs for making isotype pictograms.
Self Calibrating Quantile-Quantile Plots for Visual Testing
Provides the function qqtest which incorporates uncertainty in its qqplot display(s) so that the user might have a better sense of the evidence against the specified distributional hypothesis. qqtest draws a quantile quantile plot for visually assessing whether the data come from a test distribution that has been defined in one of many ways. The vertical axis plots the data quantiles, the horizontal those of a test distribution. The default behaviour generates 1000 samples from the test distribution and overlays the plot with shaded pointwise interval estimates for the ordered quantiles from the test distribution. A small number of independently generated exemplar quantile plots can also be overlaid. Both the interval estimates and the exemplars provide different comparative information to assess the evidence provided by the qqplot for or against the hypothesis that the data come from the test distribution (default is normal or gaussian). Finally, a visual test of significance (a lineup plot) can also be displayed to test the null hypothesis that the data come from the test distribution.
Visualisation of Sequential Probability Distributions Using Fan Charts
Visualise sequential distributions using a range of plotting
styles. Sequential distribution data can be input as either simulations or
values corresponding to percentiles over time. Plots are added to
existing graphic devices using the fan function. Users can choose from four
different styles, including fan chart type plots, where a set of coloured
polygon, with shadings corresponding to the percentile values are layered
to represent different uncertainty levels. Full details in R Journal article; Abel (2015)
Visualisation of High-Throughput Behavioural (i.e. Ethomics) Data
Extension of 'ggplot2' providing layers, scales and preprocessing functions useful to represent behavioural variables that are recorded over multiple animals and days. This package is part of the 'rethomics' framework < https://rethomics.github.io/>.
Color-Based Plots for Multivariate Visualization
Functions for color-based visualization of multivariate data, i.e. colorgrams or heatmaps. Lower-level functions map numeric values to colors, display a matrix as an array of colors, and draw color keys. Higher-level plotting functions generate a bivariate histogram, a dendrogram aligned with a color-coded matrix, a triangular distance matrix, and more.
Your Advanced 3D Brain Visualization
A fast, interactive cross-platform, and easy to share
'WebGL'-based 3D brain viewer that visualizes 'FreeSurfer' and/or
'AFNI/SUMA' surfaces. The viewer widget can be either standalone or
embedded into 'R-shiny' applications. The standalone version only require
a web browser with 'WebGL2' support (for example, 'Chrome', 'Firefox',
'Safari'), and can be inserted into any websites. The 'R-shiny'
support allows the 3D viewer to be dynamically generated from reactive user
inputs. Please check the publication by Wang, Magnotti, Zhang,
and Beauchamp (2023,
Interactive Viewing of Spatial Data in R
Quickly and conveniently create interactive visualisations of spatial data with or without background maps. Attributes of displayed features are fully queryable via pop-up windows. Additional functionality includes methods to visualise true- and false-color raster images and bounding boxes.
Kernel Smoothing
Kernel smoothers for univariate and multivariate data, with comprehensive visualisation and bandwidth selection capabilities, including for densities, density derivatives, cumulative distributions, clustering, classification, density ridges, significant modal regions, and two-sample hypothesis tests. Chacon & Duong (2018)