Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2054 packages in 0.01 seconds

ggridges — by Claus O. Wilke, a year ago

Ridgeline Plots in 'ggplot2'

Ridgeline plots provide a convenient way of visualizing changes in distributions over time or space. This package enables the creation of such plots in 'ggplot2'.

caroline — by David Schruth, 7 months ago

A Collection of Database, Data Structure, Visualization, and Utility Functions for R

The caroline R library contains dozens of functions useful for: database migration (dbWriteTable2), database style joins & aggregation (nerge, groupBy, & bestBy), data structure conversion (nv, tab2df), legend table making (sstable & leghead), automatic legend positioning for scatter and box plots (), plot annotation (labsegs & mvlabs), data visualization (pies, sparge, confound.grid & raPlot), character string manipulation (m & pad), file I/O (write.delim), batch scripting, data exploration, and more. The package's greatest contributions lie in the database style merge, aggregation and interface functions as well as in it's extensive use and propagation of row, column and vector names in most functions.

MCMCvis — by Casey Youngflesh, 2 years ago

Tools to Visualize, Manipulate, and Summarize MCMC Output

Performs key functions for MCMC analysis using minimal code - visualizes, manipulates, and summarizes MCMC output. Functions support simple and straightforward subsetting of model parameters within the calls, and produce presentable and 'publication-ready' output. MCMC output may be derived from Bayesian model output fit with 'Stan', 'NIMBLE', 'JAGS', and other software.

StatRank — by Hossein Azari Soufiani, 10 years ago

Statistical Rank Aggregation: Inference, Evaluation, and Visualization

A set of methods to implement Generalized Method of Moments and Maximal Likelihood methods for Random Utility Models. These methods are meant to provide inference on rank comparison data. These methods accept full, partial, and pairwise rankings, and provides methods to break down full or partial rankings into their pairwise components. Please see Generalized Method-of-Moments for Rank Aggregation from NIPS 2013 for a description of some of our methods.

GeneralizedUmatrix — by Michael Thrun, 4 months ago

Credible Visualization for Two-Dimensional Projections of Data

Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018] . This could lead to a misleading interpretation of the underlying structures [Thrun, 2018]. By means of the 3D topographic map the generalized Umatrix is able to depict errors of these two-dimensional scatter plots. The package is derived from the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) and the main algorithm called simplified self-organizing map for dimensionality reduction methods is published in .

dendextend — by Tal Galili, 7 months ago

Extending 'dendrogram' Functionality in R

Offers a set of functions for extending 'dendrogram' objects in R, letting you visualize and compare trees of 'hierarchical clusterings'. You can (1) Adjust a tree's graphical parameters - the color, size, type, etc of its branches, nodes and labels. (2) Visually and statistically compare different 'dendrograms' to one another.

signal — by Uwe Ligges, a year ago

Signal Processing

A set of signal processing functions originally written for 'Matlab' and 'Octave'. Includes filter generation utilities, filtering functions, resampling routines, and visualization of filter models. It also includes interpolation functions.

LDAvis — by Carson Sievert, 10 years ago

Interactive Visualization of Topic Models

Tools to create an interactive web-based visualization of a topic model that has been fit to a corpus of text data using Latent Dirichlet Allocation (LDA). Given the estimated parameters of the topic model, it computes various summary statistics as input to an interactive visualization built with D3.js that is accessed via a browser. The goal is to help users interpret the topics in their LDA topic model.

ontologyPlot — by Daniel Greene, a year ago

Visualising Sets of Ontological Terms

Create R plots visualising ontological terms and the relationships between them with various graphical options - Greene et al. 2017 .

ndtv — by Skye Bender-deMoll, a year ago

Network Dynamic Temporal Visualizations

Renders dynamic network data from 'networkDynamic' objects as movies, interactive animations, or other representations of changing relational structures and attributes.