Found 85 packages in 0.01 seconds
Dynamic Generation of Scientific Reports
The RSP markup language makes any text-based document come alive. RSP provides a powerful markup for controlling the content and output of LaTeX, HTML, Markdown, AsciiDoc, Sweave and knitr documents (and more), e.g. 'Today's date is <%=Sys.Date()%>'. Contrary to many other literate programming languages, with RSP it is straightforward to loop over mixtures of code and text sections, e.g. in month-by-month summaries. RSP has also several preprocessing directives for incorporating static and dynamic contents of external files (local or online) among other things. Functions rstring() and rcat() make it easy to process RSP strings, rsource() sources an RSP file as it was an R script, while rfile() compiles it (even online) into its final output format, e.g. rfile('report.tex.rsp') generates 'report.pdf' and rfile('report.md.rsp') generates 'report.html'. RSP is ideal for self-contained scientific reports and R package vignettes. It's easy to use - if you know how to write an R script, you'll be up and running within minutes.
Various Programming Utilities
Utility functions useful when programming and developing R packages.
Functions that Apply to Rows and Columns of Matrices (and to Vectors)
High-performing functions operating on rows and columns of matrices, e.g. col / rowMedians(), col / rowRanks(), and col / rowSds(). Functions optimized per data type and for subsetted calculations such that both memory usage and processing time is minimized. There are also optimized vector-based methods, e.g. binMeans(), madDiff() and weightedMedian().
Adding Progress Bar to '*apply' Functions
A lightweight package that adds progress bar to vectorized R functions ('*apply'). The implementation can easily be added to functions where showing the progress is useful (e.g. bootstrap). The type and style of the progress bar (with percentages or remaining time) can be set through options. Supports several parallel processing backends including mirai and future.
Complete Environment for Bayesian Inference
Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).
Render Markdown with 'commonmark'
Render Markdown to full and lightweight HTML/LaTeX documents with the 'commonmark' package. This package has been superseded by 'litedown'.
R Object-Oriented Programming with or without References
Methods and classes for object-oriented programming in R with or without references. Large effort has been made on making definition of methods as simple as possible with a minimum of maintenance for package developers. The package has been developed since 2001 and is now considered very stable. This is a cross-platform package implemented in pure R that defines standard S3 classes without any tricks.
Fast and Light-Weight Caching (Memoization) of Objects and Results to Speed Up Computations
Memoization can be used to speed up repetitive and computational expensive function calls. The first time a function that implements memoization is called the results are stored in a cache memory. The next time the function is called with the same set of parameters, the results are momentarily retrieved from the cache avoiding repeating the calculations. With this package, any R object can be cached in a key-value storage where the key can be an arbitrary set of R objects. The cache memory is persistent (on the file system).
A General-Purpose Package for Dynamic Report Generation in R
Provides a general-purpose tool for dynamic report generation in R using Literate Programming techniques.
Identify Global Objects in R Expressions
Identifies global ("unknown" or "free") objects in R expressions by code inspection using various strategies (ordered, liberal, conservative, or deep-first search). The objective of this package is to make it as simple as possible to identify global objects for the purpose of exporting them in parallel, distributed compute environments.