Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 7856 packages in 0.03 seconds

nlme — by R Core Team, 10 months ago

Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

broom.mixed — by Ben Bolker, a year ago

Tidying Methods for Mixed Models

Convert fitted objects from various R mixed-model packages into tidy data frames along the lines of the 'broom' package. The package provides three S3 generics for each model: tidy(), which summarizes a model's statistical findings such as coefficients of a regression; augment(), which adds columns to the original data such as predictions, residuals and cluster assignments; and glance(), which provides a one-row summary of model-level statistics.

MCMCglmm — by Jarrod Hadfield, 2 years ago

MCMC Generalised Linear Mixed Models

Fits Multivariate Generalised Linear Mixed Models (and related models) using Markov chain Monte Carlo techniques (Hadfield 2010 J. Stat. Soft.).

gamm4 — by Simon Wood, 9 months ago

Generalized Additive Mixed Models using 'mgcv' and 'lme4'

Estimate generalized additive mixed models via a version of function gamm() from 'mgcv', using 'lme4' for estimation.

pbkrtest — by Søren Højsgaard, 6 months ago

Parametric Bootstrap, Kenward-Roger and Satterthwaite Based Methods for Test in Mixed Models

Computes p-values based on (a) Satterthwaite or Kenward-Rogers degree of freedom methods and (b) parametric bootstrap for mixed effects models as implemented in the 'lme4' package. Implements parametric bootstrap test for generalized linear mixed models as implemented in 'lme4' and generalized linear models. The package is documented in the paper by Halekoh and Højsgaard, (2012, ). Please see 'citation("pbkrtest")' for citation details.

lme4 — by Ben Bolker, a month ago

Linear Mixed-Effects Models using 'Eigen' and S4

Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".

GLMMadaptive — by Dimitris Rizopoulos, 10 months ago

Generalized Linear Mixed Models using Adaptive Gaussian Quadrature

Fits generalized linear mixed models for a single grouping factor under maximum likelihood approximating the integrals over the random effects with an adaptive Gaussian quadrature rule; Jose C. Pinheiro and Douglas M. Bates (1995) .

lqmm — by Marco Geraci, 4 years ago

Linear Quantile Mixed Models

Functions to fit quantile regression models for hierarchical data (2-level nested designs) as described in Geraci and Bottai (2014, Statistics and Computing) . A vignette is given in Geraci (2014, Journal of Statistical Software) and included in the package documents. The packages also provides functions to fit quantile models for independent data and for count responses.

pammtools — by Andreas Bender, 10 months ago

Piece-Wise Exponential Additive Mixed Modeling Tools for Survival Analysis

The Piece-wise exponential (Additive Mixed) Model (PAMM; Bender and others (2018) ) is a powerful model class for the analysis of survival (or time-to-event) data, based on Generalized Additive (Mixed) Models (GA(M)Ms). It offers intuitive specification and robust estimation of complex survival models with stratified baseline hazards, random effects, time-varying effects, time-dependent covariates and cumulative effects (Bender and others (2019)), as well as support for left-truncated data as well as competing risks, recurrent events and multi-state settings. pammtools provides tidy workflow for survival analysis with PAMMs, including data simulation, transformation and other functions for data preprocessing and model post-processing as well as visualization.

gaston — by Hervé Perdry, 2 years ago

Genetic Data Handling (QC, GRM, LD, PCA) & Linear Mixed Models

Manipulation of genetic data (SNPs). Computation of GRM and dominance matrix, LD, heritability with efficient algorithms for linear mixed model (AIREML). Dandine et al .