Found 7779 packages in 0.10 seconds
Tools for Working with Posterior Distributions
Provides useful tools for both users and developers of packages
for fitting Bayesian models or working with output from Bayesian models.
The primary goals of the package are to:
(a) Efficiently convert between many different useful formats of
draws (samples) from posterior or prior distributions.
(b) Provide consistent methods for operations commonly performed on draws,
for example, subsetting, binding, or mutating draws.
(c) Provide various summaries of draws in convenient formats.
(d) Provide lightweight implementations of state of the art posterior
inference diagnostics. References: Vehtari et al. (2021)
Bayesian Treed Gaussian Process Models
Bayesian nonstationary, semiparametric nonlinear regression
and design by treed Gaussian processes (GPs) with jumps to the limiting
linear model (LLM). Special cases also implemented include Bayesian
linear models, CART, treed linear models, stationary separable and
isotropic GPs, and GP single-index models. Provides 1-d and 2-d plotting functions
(with projection and slice capabilities) and tree drawing, designed for
visualization of tgp-class output. Sensitivity analysis and
multi-resolution models are supported. Sequential experimental
design and adaptive sampling functions are also provided, including ALM,
ALC, and expected improvement. The latter supports derivative-free
optimization of noisy black-box functions. For details and tutorials,
see Gramacy (2007)
Bayesian and Likelihood Analysis of Dynamic Linear Models
Provides routines for Maximum likelihood, Kalman filtering and smoothing, and Bayesian analysis of Normal linear State Space models, also known as Dynamic Linear Models.
Vector Representing a Random Variable
Random vectors, called rvecs. An rvec holds multiple draws, but tries to behave like a standard R vector, including working well in data frames. Rvecs are useful for working with output from a simulation or a Bayesian analysis.
Classification and Regression Training
Misc functions for training and plotting classification and regression models.
Bayesian Inference for Marketing/Micro-Econometrics
Covers many important models used in marketing and micro-econometrics applications. The package includes: Bayes Regression (univariate or multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP), Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate Mixtures of Normals (including clustering), Dirichlet Process Prior Density Estimation with normal base, Hierarchical Linear Models with normal prior and covariates, Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates, Hierarchical Negative Binomial Regression Models, Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear instrumental variables models, Analysis of Multivariate Ordinal survey data with scale usage heterogeneity (as in Rossi et al, JASA (01)), Bayesian Analysis of Aggregate Random Coefficient Logit Models as in BLP (see Jiang, Manchanda, Rossi 2009) For further reference, consult our book, Bayesian Statistics and Marketing by Rossi, Allenby and McCulloch (Wiley first edition 2005 and second forthcoming) and Bayesian Non- and Semi-Parametric Methods and Applications (Princeton U Press 2014).
Discrete Bayesian Additive Regression Trees Sampler
Fits Bayesian additive regression trees (BART; Chipman, George, and McCulloch (2010)
Convert Statistical Objects into Tidy Tibbles
Summarizes key information about statistical objects in tidy tibbles. This makes it easy to report results, create plots and consistently work with large numbers of models at once. Broom provides three verbs that each provide different types of information about a model. tidy() summarizes information about model components such as coefficients of a regression. glance() reports information about an entire model, such as goodness of fit measures like AIC and BIC. augment() adds information about individual observations to a dataset, such as fitted values or influence measures.
Regression Models for Ordinal Data
Implementation of cumulative link (mixed) models also known as ordered regression models, proportional odds models, proportional hazards models for grouped survival times and ordered logit/probit/... models. Estimation is via maximum likelihood and mixed models are fitted with the Laplace approximation and adaptive Gauss-Hermite quadrature. Multiple random effect terms are allowed and they may be nested, crossed or partially nested/crossed. Restrictions of symmetry and equidistance can be imposed on the thresholds (cut-points/intercepts). Standard model methods are available (summary, anova, drop-methods, step, confint, predict etc.) in addition to profile methods and slice methods for visualizing the likelihood function and checking convergence.
Extended Model Formulas
Infrastructure for extended formulas with multiple parts on the
right-hand side and/or multiple responses on the left-hand side
(see