Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 7779 packages in 0.10 seconds

posterior — by Paul-Christian Bürkner, 3 months ago

Tools for Working with Posterior Distributions

Provides useful tools for both users and developers of packages for fitting Bayesian models or working with output from Bayesian models. The primary goals of the package are to: (a) Efficiently convert between many different useful formats of draws (samples) from posterior or prior distributions. (b) Provide consistent methods for operations commonly performed on draws, for example, subsetting, binding, or mutating draws. (c) Provide various summaries of draws in convenient formats. (d) Provide lightweight implementations of state of the art posterior inference diagnostics. References: Vehtari et al. (2021) .

tgp — by Robert B. Gramacy, 8 months ago

Bayesian Treed Gaussian Process Models

Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes (GPs) with jumps to the limiting linear model (LLM). Special cases also implemented include Bayesian linear models, CART, treed linear models, stationary separable and isotropic GPs, and GP single-index models. Provides 1-d and 2-d plotting functions (with projection and slice capabilities) and tree drawing, designed for visualization of tgp-class output. Sensitivity analysis and multi-resolution models are supported. Sequential experimental design and adaptive sampling functions are also provided, including ALM, ALC, and expected improvement. The latter supports derivative-free optimization of noisy black-box functions. For details and tutorials, see Gramacy (2007) and Gramacy & Taddy (2010) .

dlm — by Giovanni Petris, 8 months ago

Bayesian and Likelihood Analysis of Dynamic Linear Models

Provides routines for Maximum likelihood, Kalman filtering and smoothing, and Bayesian analysis of Normal linear State Space models, also known as Dynamic Linear Models.

rvec — by John Bryant, 8 months ago

Vector Representing a Random Variable

Random vectors, called rvecs. An rvec holds multiple draws, but tries to behave like a standard R vector, including working well in data frames. Rvecs are useful for working with output from a simulation or a Bayesian analysis.

caret — by Max Kuhn, 5 months ago

Classification and Regression Training

Misc functions for training and plotting classification and regression models.

bayesm — by Peter Rossi, 2 years ago

Bayesian Inference for Marketing/Micro-Econometrics

Covers many important models used in marketing and micro-econometrics applications. The package includes: Bayes Regression (univariate or multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP), Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate Mixtures of Normals (including clustering), Dirichlet Process Prior Density Estimation with normal base, Hierarchical Linear Models with normal prior and covariates, Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates, Hierarchical Negative Binomial Regression Models, Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear instrumental variables models, Analysis of Multivariate Ordinal survey data with scale usage heterogeneity (as in Rossi et al, JASA (01)), Bayesian Analysis of Aggregate Random Coefficient Logit Models as in BLP (see Jiang, Manchanda, Rossi 2009) For further reference, consult our book, Bayesian Statistics and Marketing by Rossi, Allenby and McCulloch (Wiley first edition 2005 and second forthcoming) and Bayesian Non- and Semi-Parametric Methods and Applications (Princeton U Press 2014).

dbarts — by Vincent Dorie, a month ago

Discrete Bayesian Additive Regression Trees Sampler

Fits Bayesian additive regression trees (BART; Chipman, George, and McCulloch (2010) ) while allowing the updating of predictors or response so that BART can be incorporated as a conditional model in a Gibbs/Metropolis-Hastings sampler. Also serves as a drop-in replacement for package 'BayesTree'.

broom — by Simon Couch, 2 months ago

Convert Statistical Objects into Tidy Tibbles

Summarizes key information about statistical objects in tidy tibbles. This makes it easy to report results, create plots and consistently work with large numbers of models at once. Broom provides three verbs that each provide different types of information about a model. tidy() summarizes information about model components such as coefficients of a regression. glance() reports information about an entire model, such as goodness of fit measures like AIC and BIC. augment() adds information about individual observations to a dataset, such as fitted values or influence measures.

ordinal — by Rune Haubo Bojesen Christensen, 9 months ago

Regression Models for Ordinal Data

Implementation of cumulative link (mixed) models also known as ordered regression models, proportional odds models, proportional hazards models for grouped survival times and ordered logit/probit/... models. Estimation is via maximum likelihood and mixed models are fitted with the Laplace approximation and adaptive Gauss-Hermite quadrature. Multiple random effect terms are allowed and they may be nested, crossed or partially nested/crossed. Restrictions of symmetry and equidistance can be imposed on the thresholds (cut-points/intercepts). Standard model methods are available (summary, anova, drop-methods, step, confint, predict etc.) in addition to profile methods and slice methods for visualizing the likelihood function and checking convergence.

Formula — by Achim Zeileis, 2 years ago

Extended Model Formulas

Infrastructure for extended formulas with multiple parts on the right-hand side and/or multiple responses on the left-hand side (see ).