Found 59 packages in 0.01 seconds
DataCrunchers (PogromcyDanych) is the Massive Online Open Course that Brings R and Statistics to the People
The data sets used in the online course ,,PogromcyDanych''. You can process data in many ways. The course Data Crunchers will introduce you to this variety. For this reason we will work on datasets of different size (from several to several hundred thousand rows), with various level of complexity (from two to two thousand columns) and prepared in different formats (text data, quantitative data and qualitative data). All of these data sets were gathered in a single big package called PogromcyDanych to facilitate access to them. It contains all sorts of data sets such as data about offer prices of cars, results of opinion polls, information about changes in stock market indices, data about names given to newborn babies, ski jumping results or information about outcomes of breast cancer patients treatment.
Tools for Accessing Various Datasets Developed by the Foundation SmarterPoland.pl
Tools for accessing and processing datasets prepared by the Foundation SmarterPoland.pl. Among all: access to API of Google Maps, Central Statistical Office of Poland, MojePanstwo, Eurostat, WHO and other sources.
Datasets and Functions Used in the Book 'Przewodnik po Pakiecie R'
Data sets and functions used in the polish book "Przewodnik po pakiecie R" (The Hitchhiker's Guide to the R). See more at < http://biecek.pl/R>. Among others you will find here data about housing prices, cancer patients, running times and many others.
Ceteris Paribus Profiles
Ceteris Paribus Profiles (What-If Plots) are designed to present model responses around selected points in a feature space. For example around a single prediction for an interesting observation. Plots are designed to work in a model-agnostic fashion, they are working for any predictive Machine Learning model and allow for model comparisons. Ceteris Paribus Plots supplement the Break Down Plots from 'breakDown' package.
The Proton Game
'The Proton Game' is a console-based data-crunching game for younger and older data scientists. Act as a data-hacker and find Slawomir Pietraszko's credentials to the Proton server. You have to solve four data-based puzzles to find the login and password. There are many ways to solve these puzzles. You may use loops, data filtering, ordering, aggregation or other tools. Only basics knowledge of R is required to play the game, yet the more functions you know, the more approaches you can try. The knowledge of dplyr is not required but may be very helpful. This game is linked with the ,,Pietraszko's Cave'' story available at http://biecek.pl/BetaBit/Warsaw. It's a part of Beta and Bit series. You will find more about the Beta and Bit series at http://biecek.pl/BetaBit.
Mini Games from Adventures of Beta and Bit
Three games: proton, frequon and regression. Each one is a console-based data-crunching game for younger and older data scientists. Act as a data-hacker and find Slawomir Pietraszko's credentials to the Proton server. In proton you have to solve four data-based puzzles to find the login and password. There are many ways to solve these puzzles. You may use loops, data filtering, ordering, aggregation or other tools. Only basics knowledge of R is required to play the game, yet the more functions you know, the more approaches you can try. In frequon you will help to perform statistical cryptanalytic attack on a corpus of ciphered messages. This time seven sub-tasks are pushing the bar much higher. Do you accept the challenge? In regression you will test your modeling skills in a series of eight sub-tasks. Try only if ANOVA is your close friend. It's a part of Beta and Bit project. You will find more about the Beta and Bit project at < https://github.com/BetaAndBit/Charts>.
LIME-Based Explanations with Interpretable Inputs Based on Ceteris Paribus Profiles
Local explanations of machine learning models describe, how features contributed to a single prediction.
This package implements an explanation method based on LIME
(Local Interpretable Model-agnostic Explanations,
see Tulio Ribeiro, Singh, Guestrin (2016)
A Set of Datasets Used in My Classes or in the Book 'Modele Liniowe i Mieszane w R, Wraz z Przykladami w Analizie Danych'
A set of datasets and functions used in the book 'Modele liniowe i mieszane w R, wraz z przykladami w analizie danych'. Datasets either come from real studies or are created to be as similar as possible to real studies.
Explainers for Regression Models in HIV Research
A dedicated viral-explainer model tool designed to empower researchers in the field of HIV research, particularly in viral load and CD4 (Cluster of Differentiation 4) lymphocytes regression modeling. Drawing inspiration from the 'tidymodels' framework for rigorous model building of Max Kuhn and Hadley Wickham (2020) < https://www.tidymodels.org>, and the 'DALEXtra' tool for explainability by Przemyslaw Biecek (2020)
Local Interpretable (Model-Agnostic) Visual Explanations
Interpretability of complex machine learning models is a growing concern.
This package helps to understand key factors that drive the
decision made by complicated predictive model (so called black box model).
This is achieved through local approximations that are either based on
additive regression like model or CART like model that allows for
higher interactions. The methodology is based on Tulio Ribeiro, Singh, Guestrin (2016)