Found 89 packages in 0.12 seconds
Simple Memory Profiling for R
A simple and light-weight API for memory profiling of R expressions. The profiling is built on top of R's built-in memory profiler ('utils::Rprofmem()'), which records every memory allocation done by R (also native code).
Methods for Reading dChip Files
Functions for reading DCP and CDF.bin files generated by the dChip software.
Copy-Number Analysis of Large Microarray Data Sets
Methods for analyzing DNA copy-number data. Specifically, this package implements the multi-source copy-number normalization (MSCN) method for normalizing copy-number data obtained on various platforms and technologies. It also implements the TumorBoost method for normalizing paired tumor-normal SNP data.
Identify Global Objects in R Expressions
Identifies global ("unknown" or "free") objects in R expressions by code inspection using various strategies (ordered, liberal, conservative, or deep-first search). The objective of this package is to make it as simple as possible to identify global objects for the purpose of exporting them in parallel, distributed compute environments.
Unified Parallel and Distributed Processing in R for Everyone
The purpose of this package is to provide a lightweight and unified Future API for sequential and parallel processing of R expression via futures. The simplest way to evaluate an expression in parallel is to use `x %<-% { expression }` with `plan(multisession)`. This package implements sequential, multicore, multisession, and cluster futures. With these, R expressions can be evaluated on the local machine, in parallel a set of local machines, or distributed on a mix of local and remote machines. Extensions to this package implement additional backends for processing futures via compute cluster schedulers, etc. Because of its unified API, there is no need to modify any code in order switch from sequential on the local machine to, say, distributed processing on a remote compute cluster. Another strength of this package is that global variables and functions are automatically identified and exported as needed, making it straightforward to tweak existing code to make use of futures.
Affymetrix SNP Probe-Summarization using Non-Negative Matrix Factorization
A summarization method to estimate allele-specific copy number signals for Affymetrix SNP microarrays using non-negative matrix factorization (NMF).
Enhancing the 'parallel' Package
Utility functions that enhance the 'parallel' package and support the built-in parallel backends of the 'future' package. For example, availableCores() gives the number of CPU cores available to your R process as given by the operating system, 'cgroups' and Linux containers, R options, and environment variables, including those set by job schedulers on high-performance compute clusters. If none is set, it will fall back to parallel::detectCores(). Another example is makeClusterPSOCK(), which is backward compatible with parallel::makePSOCKcluster() while doing a better job in setting up remote cluster workers without the need for configuring the firewall to do port-forwarding to your local computer.
Test Suite for 'Future API' Backends
Backends implementing the 'Future' API
A 'Future' API for Parallel Processing using 'mirai'
Implementation of the 'Future' API
Analysis of Large Affymetrix Microarray Data Sets
A cross-platform R framework that facilitates processing of any number of Affymetrix microarray samples regardless of computer system. The only parameter that limits the number of chips that can be processed is the amount of available disk space. The Aroma Framework has successfully been used in studies to process tens of thousands of arrays. This package has actively been used since 2006.