Found 85 packages in 0.03 seconds
Test Suite for 'Future API' Backends
Backends implementing the 'Future' API
Fit a Principal Curve in Arbitrary Dimension
Fitting a principal curve to a data matrix in arbitrary dimensions.
Hastie and Stuetzle (1989)
Bridge Sampling for Marginal Likelihoods and Bayes Factors
Provides functions for estimating marginal likelihoods, Bayes
factors, posterior model probabilities, and normalizing constants in general,
via different versions of bridge sampling (Meng & Wong, 1996,
< http://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm>).
Gronau, Singmann, & Wagenmakers (2020)
Fast Pseudo Random Number Generators
Several fast random number generators are provided as C++
header only libraries: The PCG family by O'Neill (2014
< https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf>) as well as
the Xoroshiro / Xoshiro family by Blackman and Vigna (2021
The R to MOSEK Optimization Interface
This is a meta-package designed to support the installation of Rmosek (>= 6.0) and bring the optimization facilities of MOSEK (>= 6.0) to the R-language. The interface supports large-scale optimization of many kinds: Mixed-integer and continuous linear, second-order cone, exponential cone and power cone optimization, as well as continuous semidefinite optimization. Rmosek and the R-language are open-source projects. MOSEK is a proprietary product, but unrestricted trial and academic licenses are available.
Get the Same, Personal, Free 'TCP' Port over and over
An R implementation of the cross-platform, language-independent "port4me" algorithm (< https://github.com/HenrikBengtsson/port4me>), which (1) finds a free Transmission Control Protocol ('TCP') port in [1024,65535] that the user can open, (2) is designed to work in multi-user environments, (3), gives different users, different ports, (4) gives the user the same port over time with high probability, (5) gives different ports for different software tools, and (6) requires no configuration.
Understand and Describe Bayesian Models and Posterior Distributions
Provides utilities to describe posterior
distributions and Bayesian models. It includes point-estimates such as
Maximum A Posteriori (MAP), measures of dispersion (Highest Density
Interval - HDI; Kruschke, 2015
Methods for Reading dChip Files
Functions for reading DCP and CDF.bin files generated by the dChip software.
Environments Behaving (Almost) as Lists
List environments are environments that have list-like properties. For instance, the elements of a list environment are ordered and can be accessed and iterated over using index subsetting, e.g. 'x <- listenv(a = 1, b = 2); for (i in seq_along(x)) x[[i]] <- x[[i]] ^ 2; y <- as.list(x)'.
Multiverse Analysis of Multinomial Processing Tree Models
Statistical or cognitive modeling usually requires a number of more or less
arbitrary choices creating one specific path through a 'garden of forking paths'.
The multiverse approach (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016,