Found 85 packages in 0.02 seconds
Utilities from 'Seminar fuer Statistik' ETH Zurich
Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().
R Interface to the Pushbullet Messaging Service
An R interface to the Pushbullet messaging service which provides fast and efficient notifications (and file transfer) between computers, phones and tablets. An account has to be registered at the site < https://www.pushbullet.com> site to obtain a (free) API key.
Unified Parallel and Distributed Processing in R for Everyone
The purpose of this package is to provide a lightweight and unified Future API for sequential and parallel processing of R expression via futures. The simplest way to evaluate an expression in parallel is to use `x %<-% { expression }` with `plan(multisession)`. This package implements sequential, multicore, multisession, and cluster futures. With these, R expressions can be evaluated on the local machine, in parallel a set of local machines, or distributed on a mix of local and remote machines. Extensions to this package implement additional backends for processing futures via compute cluster schedulers, etc. Because of its unified API, there is no need to modify any code in order switch from sequential on the local machine to, say, distributed processing on a remote compute cluster. Another strength of this package is that global variables and functions are automatically identified and exported as needed, making it straightforward to tweak existing code to make use of futures.
Use Foreach to Parallelize via the Future Framework
The 'future' package provides a unifying parallelization framework for R that supports many parallel and distributed backends
An Inclusive, Unifying API for Progress Updates
A minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates, e.g. in the terminal using utils::txtProgressBar(), cli::cli_progress_bar(), in a graphical user interface using utils::winProgressBar(), tcltk::tkProgressBar() or shiny::withProgress(), via the speakers using beepr::beep(), or on a file system via the size of a file. Anyone can add additional, customized, progression handlers. The 'progressr' package uses R's condition framework for signaling progress updated. Because of this, progress can be reported from almost anywhere in R, e.g. from classical for and while loops, from map-reduce API:s like the lapply() family of functions, 'purrr', 'plyr', and 'foreach'. It will also work with parallel processing via the 'future' framework, e.g. future.apply::future_lapply(), furrr::future_map(), and 'foreach' with 'doFuture'. The package is compatible with Shiny applications.
Rasch Model Parameters by Pairwise Algorithm
Performs the explicit calculation -- not estimation! -- of the Rasch item parameters for dichotomous and polytomous item responses, using a pairwise comparison approach. Person parameters (WLE) are calculated according to Warm's weighted likelihood approach.
Affymetrix SNP Probe-Summarization using Non-Negative Matrix Factorization
A summarization method to estimate allele-specific copy number signals for Affymetrix SNP microarrays using non-negative matrix factorization (NMF).
Batch Computing with R
Provides Map, Reduce and Filter variants to generate jobs on batch computing systems like PBS/Torque, LSF, SLURM and Sun Grid Engine. Multicore and SSH systems are also supported. For further details see the project web page.
Enhancing the 'parallel' Package
Utility functions that enhance the 'parallel' package and support the built-in parallel backends of the 'future' package. For example, availableCores() gives the number of CPU cores available to your R process as given by the operating system, 'cgroups' and Linux containers, R options, and environment variables, including those set by job schedulers on high-performance compute clusters. If none is set, it will fall back to parallel::detectCores(). Another example is makeClusterPSOCK(), which is backward compatible with parallel::makePSOCKcluster() while doing a better job in setting up remote cluster workers without the need for configuring the firewall to do port-forwarding to your local computer.
Apply Function to Elements in Parallel using Futures
Implementations of apply(), by(), eapply(), lapply(), Map(), .mapply(), mapply(), replicate(), sapply(), tapply(), and vapply() that can be resolved using any future-supported backend, e.g. parallel on the local machine or distributed on a compute cluster. These future_*apply() functions come with the same pros and cons as the corresponding base-R *apply() functions but with the additional feature of being able to be processed via the future framework