Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 85 packages in 0.02 seconds

sfsmisc — by Martin Maechler, a month ago

Utilities from 'Seminar fuer Statistik' ETH Zurich

Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().

RPushbullet — by Dirk Eddelbuettel, 2 months ago

R Interface to the Pushbullet Messaging Service

An R interface to the Pushbullet messaging service which provides fast and efficient notifications (and file transfer) between computers, phones and tablets. An account has to be registered at the site < https://www.pushbullet.com> site to obtain a (free) API key.

future — by Henrik Bengtsson, a month ago

Unified Parallel and Distributed Processing in R for Everyone

The purpose of this package is to provide a lightweight and unified Future API for sequential and parallel processing of R expression via futures. The simplest way to evaluate an expression in parallel is to use `x %<-% { expression }` with `plan(multisession)`. This package implements sequential, multicore, multisession, and cluster futures. With these, R expressions can be evaluated on the local machine, in parallel a set of local machines, or distributed on a mix of local and remote machines. Extensions to this package implement additional backends for processing futures via compute cluster schedulers, etc. Because of its unified API, there is no need to modify any code in order switch from sequential on the local machine to, say, distributed processing on a remote compute cluster. Another strength of this package is that global variables and functions are automatically identified and exported as needed, making it straightforward to tweak existing code to make use of futures.

doFuture — by Henrik Bengtsson, 12 days ago

Use Foreach to Parallelize via the Future Framework

The 'future' package provides a unifying parallelization framework for R that supports many parallel and distributed backends . The 'foreach' package provides a powerful API for iterating over an R expression in parallel. The 'doFuture' package brings the best of the two together. There are two alternative ways to use this package. The recommended approach is to use 'y <- foreach(...) %dofuture% { ... }', which does not require using 'registerDoFuture()' and has many advantages over '%dopar%'. The alternative is the traditional 'foreach' approach by registering the 'foreach' adapter 'registerDoFuture()' and so that 'y <- foreach(...) %dopar% { ... }' runs in parallelizes with the 'future' framework.

progressr — by Henrik Bengtsson, a month ago

An Inclusive, Unifying API for Progress Updates

A minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates, e.g. in the terminal using utils::txtProgressBar(), cli::cli_progress_bar(), in a graphical user interface using utils::winProgressBar(), tcltk::tkProgressBar() or shiny::withProgress(), via the speakers using beepr::beep(), or on a file system via the size of a file. Anyone can add additional, customized, progression handlers. The 'progressr' package uses R's condition framework for signaling progress updated. Because of this, progress can be reported from almost anywhere in R, e.g. from classical for and while loops, from map-reduce API:s like the lapply() family of functions, 'purrr', 'plyr', and 'foreach'. It will also work with parallel processing via the 'future' framework, e.g. future.apply::future_lapply(), furrr::future_map(), and 'foreach' with 'doFuture'. The package is compatible with Shiny applications.

pairwise — by Joerg-Henrik Heine, 3 months ago

Rasch Model Parameters by Pairwise Algorithm

Performs the explicit calculation -- not estimation! -- of the Rasch item parameters for dichotomous and polytomous item responses, using a pairwise comparison approach. Person parameters (WLE) are calculated according to Warm's weighted likelihood approach.

ACNE — by Henrik Bengtsson, 4 months ago

Affymetrix SNP Probe-Summarization using Non-Negative Matrix Factorization

A summarization method to estimate allele-specific copy number signals for Affymetrix SNP microarrays using non-negative matrix factorization (NMF).

BatchJobs — by Bernd Bischl, 3 months ago

Batch Computing with R

Provides Map, Reduce and Filter variants to generate jobs on batch computing systems like PBS/Torque, LSF, SLURM and Sun Grid Engine. Multicore and SSH systems are also supported. For further details see the project web page.

parallelly — by Henrik Bengtsson, 9 days ago

Enhancing the 'parallel' Package

Utility functions that enhance the 'parallel' package and support the built-in parallel backends of the 'future' package. For example, availableCores() gives the number of CPU cores available to your R process as given by the operating system, 'cgroups' and Linux containers, R options, and environment variables, including those set by job schedulers on high-performance compute clusters. If none is set, it will fall back to parallel::detectCores(). Another example is makeClusterPSOCK(), which is backward compatible with parallel::makePSOCKcluster() while doing a better job in setting up remote cluster workers without the need for configuring the firewall to do port-forwarding to your local computer.

future.apply — by Henrik Bengtsson, 12 days ago

Apply Function to Elements in Parallel using Futures

Implementations of apply(), by(), eapply(), lapply(), Map(), .mapply(), mapply(), replicate(), sapply(), tapply(), and vapply() that can be resolved using any future-supported backend, e.g. parallel on the local machine or distributed on a compute cluster. These future_*apply() functions come with the same pros and cons as the corresponding base-R *apply() functions but with the additional feature of being able to be processed via the future framework .