Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2309 packages in 0.05 seconds

sjPlot — by Daniel Lüdecke, 7 months ago

Data Visualization for Statistics in Social Science

Collection of plotting and table output functions for data visualization. Results of various statistical analyses (that are commonly used in social sciences) can be visualized using this package, including simple and cross tabulated frequencies, histograms, box plots, (generalized) linear models, mixed effects models, principal component analysis and correlation matrices, cluster analyses, scatter plots, stacked scales, effects plots of regression models (including interaction terms) and much more. This package supports labelled data.

graphlayouts — by David Schoch, a year ago

Additional Layout Algorithms for Network Visualizations

Several new layout algorithms to visualize networks are provided which are not part of 'igraph'. Most are based on the concept of stress majorization by Gansner et al. (2004) . Some more specific algorithms allow the user to emphasize hidden group structures in networks or focus on specific nodes.

epicontacts — by Finlay Campbell, 2 years ago

Handling, Visualisation and Analysis of Epidemiological Contacts

A collection of tools for representing epidemiological contact data, composed of case line lists and contacts between cases. Also contains procedures for data handling, interactive graphics, and statistics.

clustree — by Luke Zappia, 2 years ago

Visualise Clusterings at Different Resolutions

Deciding what resolution to use can be a difficult question when approaching a clustering analysis. One way to approach this problem is to look at how samples move as the number of clusters increases. This package allows you to produce clustering trees, a visualisation for interrogating clusterings as resolution increases.

vpc — by Ron Keizer, 5 years ago

Create Visual Predictive Checks

Visual predictive checks are a commonly used diagnostic plot in pharmacometrics, showing how certain statistics (percentiles) for observed data compare to those same statistics for data simulated from a model. The package can generate VPCs for continuous, categorical, censored, and (repeated) time-to-event data.

cowplot — by Claus O. Wilke, 7 months ago

Streamlined Plot Theme and Plot Annotations for 'ggplot2'

Provides various features that help with creating publication-quality figures with 'ggplot2', such as a set of themes, functions to align plots and arrange them into complex compound figures, and functions that make it easy to annotate plots and or mix plots with images. The package was originally written for internal use in the Wilke lab, hence the name (Claus O. Wilke's plot package). It has also been used extensively in the book Fundamentals of Data Visualization.

visdat — by Nicholas Tierney, 3 years ago

Preliminary Visualisation of Data

Create preliminary exploratory data visualisations of an entire dataset to identify problems or unexpected features using 'ggplot2'.

ggdensity — by James Otto, 3 years ago

Interpretable Bivariate Density Visualization with 'ggplot2'

The 'ggplot2' package provides simple functions for visualizing contours of 2-d kernel density estimates. 'ggdensity' implements several additional density estimators as well as more interpretable visualizations based on highest density regions instead of the traditional height of the estimated density surface.

ROCit — by Md Riaz Ahmed Khan, 2 years ago

Performance Assessment of Binary Classifier with Visualization

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

ggraph — by Thomas Lin Pedersen, 5 months ago

An Implementation of Grammar of Graphics for Graphs and Networks

The grammar of graphics as implemented in ggplot2 is a poor fit for graph and network visualizations due to its reliance on tabular data input. ggraph is an extension of the ggplot2 API tailored to graph visualizations and provides the same flexible approach to building up plots layer by layer.