Found 7403 packages in 0.19 seconds
Dyadic Mixed Model for Pedigree Data
Mixed model analysis for quantitative genetics with multi-trait responses and pedigree-based partitioning of individual variation into a range of environmental and genetic variance components for individual and maternal effects. Method documented in dmmOverview.pdf; dmm is an implementation of dispersion mean model described by Searle et al. (1992) "Variance Components", Wiley, NY. 'DMM' can do 'MINQUE', 'bias-corrected-ML', and 'REML' variance component estimates.
Generalized Additive Mixed Model Interface
An interface for fitting generalized additive models (GAMs) and generalized additive mixed models (GAMMs) using the 'lme4' package as the computational engine, as described in Helwig (2024)
The Phylogenetic Ornstein-Uhlenbeck Mixed Model
The Phylogenetic Ornstein-Uhlenbeck Mixed Model (POUMM) allows to
estimate the phylogenetic heritability of continuous traits, to test
hypotheses of neutral evolution versus stabilizing selection, to quantify
the strength of stabilizing selection, to estimate measurement error and to
make predictions about the evolution of a phenotype and phenotypic variation
in a population. The package implements combined maximum likelihood and
Bayesian inference of the univariate Phylogenetic Ornstein-Uhlenbeck Mixed
Model, fast parallel likelihood calculation, maximum likelihood
inference of the genotypic values at the tips, functions for summarizing and
plotting traces and posterior samples, functions for simulation of a univariate
continuous trait evolution model along a phylogenetic tree. So far, the
package has been used for estimating the heritability of quantitative traits
in macroevolutionary and epidemiological studies, see e.g.
Bertels et al. (2017)
Generalised Linear Mixed Model Selection
Provides tools for fitting sparse generalised linear mixed models with l0
regularisation. Selects fixed and random effects under the hierarchy constraint that fixed effects
must precede random effects. Uses coordinate descent and local search algorithms to rapidly
deliver near-optimal estimates. Gaussian and binomial response families are currently supported.
For more details see Thompson, Wand, and Wang (2025)
Bias Diagnostic for Linear Mixed Models
Provides a function to perform bias diagnostics on linear mixed models fitted with lmer() from the 'lme4' package. Implements permutation tests for assessing the bias of fixed effects, as described in Karl and Zimmerman (2021)
Multilevel/Mixed Model Helper Functions
A collection of miscellaneous helper function for running multilevel/mixed models in 'lme4'. This package aims to provide functions to compute common tasks when estimating multilevel models such as computing the intraclass correlation and design effect, centering variables, estimating the proportion of variance explained at each level, pseudo-R squared, random intercept and slope reliabilities, tests for homogeneity of variance at level-1, and cluster robust and bootstrap standard errors. The tests and statistics reported in the package are from Raudenbush & Bryk (2002, ISBN:9780761919049), Hox et al. (2018, ISBN:9781138121362), and Snijders & Bosker (2012, ISBN:9781849202015).
Likelihood-Based Boosting for Generalized Mixed Models
Likelihood-based boosting approaches for generalized mixed models are provided.
Longitudinal Drift-Diffusion Mixed Models (LDDMM)
Implementation of the drift-diffusion mixed model for category learning as described in Paulon et al. (2021)
Power Analysis for Random Effects in Mixed Models
Simulation functions to assess or explore the power of a dataset to estimates significant random effects (intercept or slope) in a mixed model. The functions are based on the "lme4" and "lmerTest" packages.
Poisson-Tweedie Generalized Linear Mixed Model
Fits the Poisson-Tweedie generalized linear mixed model
described in Signorelli et al. (2021,