Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 5994 packages in 0.03 seconds

spNetwork — by Jeremy Gelb, 3 months ago

Spatial Analysis on Network

Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw' objects from 'spdep' package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) ; Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).

ITNr — by Matthew Smith, 3 years ago

Analysis of the International Trade Network

Functions to clean and process international trade data into an international trade network (ITN) are provided. It then provides a set a functions to undertake analysis and plots of the ITN (extract the backbone, centrality, blockmodels, clustering). Examining the key players in the ITN and regional trade patterns.

rankinma — by Enoch Kang, 2 years ago

Rank in Network Meta-Analysis

A supportive collection of functions for gathering and plotting treatment ranking metrics after network meta-analysis.

nevada — by Aymeric Stamm, 2 years ago

Network-Valued Data Analysis

A flexible statistical framework for network-valued data analysis. It leverages the complexity of the space of distributions on graphs by using the permutation framework for inference as implemented in the 'flipr' package. Currently, only the two-sample testing problem is covered and generalization to k samples and regression will be added in the future as well. It is a 4-step procedure where the user chooses a suitable representation of the networks, a suitable metric to embed the representation into a metric space, one or more test statistics to target specific aspects of the distributions to be compared and a formula to compute the permutation p-value. Two types of inference are provided: a global test answering whether there is a difference between the distributions that generated the two samples and a local test for localizing differences on the network structure. The latter is assumed to be shared by all networks of both samples. References: Lovato, I., Pini, A., Stamm, A., Vantini, S. (2020) "Model-free two-sample test for network-valued data" ; Lovato, I., Pini, A., Stamm, A., Taquet, M., Vantini, S. (2021) "Multiscale null hypothesis testing for network-valued data: Analysis of brain networks of patients with autism" .

queueing — by Pedro Canadilla, 6 years ago

Analysis of Queueing Networks and Models

It provides versatile tools for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks. It implements M/M/1, M/M/c, M/M/Infinite, M/M/1/K, M/M/c/K, M/M/c/c, M/M/1/K/K, M/M/c/K/K, M/M/c/K/m, M/M/Infinite/K/K, Multiple Channel Open Jackson Networks, Multiple Channel Closed Jackson Networks, Single Channel Multiple Class Open Networks, Single Channel Multiple Class Closed Networks and Single Channel Multiple Class Mixed Networks. Also it provides a B-Erlang, C-Erlang and Engset calculators. This work is dedicated to the memory of D. Sixto Rios Insua.

NeuralSens — by Jaime Pizarroso Gonzalo, 2 years ago

Sensitivity Analysis of Neural Networks

Analysis functions to quantify inputs importance in neural network models. Functions are available for calculating and plotting the inputs importance and obtaining the activation function of each neuron layer and its derivatives. The importance of a given input is defined as the distribution of the derivatives of the output with respect to that input in each training data point .

NetSwan — by Serge Lhomme, 10 years ago

Network Strengths and Weaknesses Analysis

A set of functions for studying network robustness, resilience and vulnerability.

voson.tcn — by Bryan Gertzel, 3 years ago

Twitter Conversation Networks and Analysis

Collects tweets and metadata for threaded conversations and generates networks.

bnpa — by Elias Carvalho, 6 years ago

Bayesian Networks & Path Analysis

This project aims to enable the method of Path Analysis to infer causalities from data. For this we propose a hybrid approach, which uses Bayesian network structure learning algorithms from data to create the input file for creation of a PA model. The process is performed in a semi-automatic way by our intermediate algorithm, allowing novice researchers to create and evaluate their own PA models from a data set. The references used for this project are: Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press. . Nagarajan, R., Scutari, M., & Lèbre, S. (2013). Bayesian networks in r. Springer, 122, 125-127. Scutari, M., & Denis, J. B. . Scutari M (2010). Bayesian networks: with examples in R. Chapman and Hall/CRC. . Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1 - 36. .

ManyIVsNets — by Avishek Bhandari, 6 months ago

Environmental Phillips Curve Analysis with Multiple Instrumental Variables and Networks

Comprehensive toolkit for Environmental Phillips Curve analysis featuring multidimensional instrumental variable creation, transfer entropy causal discovery, network analysis, and state-of-the-art econometric methods. Implements geographic, technological, migration, geopolitical, financial, and natural risk instruments with robust diagnostics and visualization. Provides 24 different instrumental variable approaches with empirical validation. Methods based on Phillips (1958) , transfer entropy by Schreiber (2000) , and weak instrument tests by Stock and Yogo (2005) .