Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 5671 packages in 0.02 seconds

spNetwork — by Jeremy Gelb, 3 months ago

Spatial Analysis on Network

Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw' objects from 'spdep' package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) ; Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).

EGAnet — by Hudson Golino, 3 months ago

Exploratory Graph Analysis – a Framework for Estimating the Number of Dimensions in Multivariate Data using Network Psychometrics

Implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA estimates the number of dimensions in psychological data using network estimation methods and community detection algorithms. A bootstrap method is provided to assess the stability of dimensions and items. Fit is evaluated using the Entropy Fit family of indices. Unique Variable Analysis evaluates the extent to which items are locally dependent (or redundant). Network loadings provide similar information to factor loadings and can be used to compute network scores. A bootstrap and permutation approach are available to assess configural and metric invariance. Hierarchical structures can be detected using Hierarchical EGA. Time series and intensive longitudinal data can be analyzed using Dynamic EGA, supporting individual, group, and population level assessments.

spatstat.explore — by Adrian Baddeley, a month ago

Exploratory Data Analysis for the 'spatstat' Family

Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.

microeco — by Chi Liu, 2 months ago

Microbial Community Ecology Data Analysis

A series of statistical and plotting approaches in microbial community ecology based on the R6 class. The classes are designed for data preprocessing, taxa abundance plotting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model analysis, network analysis, machine learning, environmental data analysis and functional analysis.

ITNr — by Matthew Smith, 2 years ago

Analysis of the International Trade Network

Functions to clean and process international trade data into an international trade network (ITN) are provided. It then provides a set a functions to undertake analysis and plots of the ITN (extract the backbone, centrality, blockmodels, clustering). Examining the key players in the ITN and regional trade patterns.

rankinma — by Enoch Kang, a year ago

Rank in Network Meta-Analysis

A supportive collection of functions for gathering and plotting treatment ranking metrics after network meta-analysis.

nevada — by Aymeric Stamm, 2 years ago

Network-Valued Data Analysis

A flexible statistical framework for network-valued data analysis. It leverages the complexity of the space of distributions on graphs by using the permutation framework for inference as implemented in the 'flipr' package. Currently, only the two-sample testing problem is covered and generalization to k samples and regression will be added in the future as well. It is a 4-step procedure where the user chooses a suitable representation of the networks, a suitable metric to embed the representation into a metric space, one or more test statistics to target specific aspects of the distributions to be compared and a formula to compute the permutation p-value. Two types of inference are provided: a global test answering whether there is a difference between the distributions that generated the two samples and a local test for localizing differences on the network structure. The latter is assumed to be shared by all networks of both samples. References: Lovato, I., Pini, A., Stamm, A., Vantini, S. (2020) "Model-free two-sample test for network-valued data" ; Lovato, I., Pini, A., Stamm, A., Taquet, M., Vantini, S. (2021) "Multiscale null hypothesis testing for network-valued data: Analysis of brain networks of patients with autism" .

queueing — by Pedro Canadilla, 6 years ago

Analysis of Queueing Networks and Models

It provides versatile tools for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks. It implements M/M/1, M/M/c, M/M/Infinite, M/M/1/K, M/M/c/K, M/M/c/c, M/M/1/K/K, M/M/c/K/K, M/M/c/K/m, M/M/Infinite/K/K, Multiple Channel Open Jackson Networks, Multiple Channel Closed Jackson Networks, Single Channel Multiple Class Open Networks, Single Channel Multiple Class Closed Networks and Single Channel Multiple Class Mixed Networks. Also it provides a B-Erlang, C-Erlang and Engset calculators. This work is dedicated to the memory of D. Sixto Rios Insua.

NeuralSens — by Jaime Pizarroso Gonzalo, a year ago

Sensitivity Analysis of Neural Networks

Analysis functions to quantify inputs importance in neural network models. Functions are available for calculating and plotting the inputs importance and obtaining the activation function of each neuron layer and its derivatives. The importance of a given input is defined as the distribution of the derivatives of the output with respect to that input in each training data point .

voson.tcn — by Bryan Gertzel, 3 years ago

Twitter Conversation Networks and Analysis

Collects tweets and metadata for threaded conversations and generates networks.