Found 85 packages in 0.02 seconds
Automated and Early Detection of Disease Outbreaks
A powerful tool for automating the early detection of disease outbreaks in time series data. 'aeddo' employs advanced statistical methods, including hierarchical models, in an innovative manner to effectively characterize outbreak signals. It is particularly useful for epidemiologists, public health professionals, and researchers seeking to identify and respond to disease outbreaks in a timely fashion. For a detailed reference on hierarchical models, consult Henrik Madsen and Poul Thyregod's book (2011), ISBN: 9781420091557.
Fitting (Exponential/Diffusion) RT-MPT Models
Fit (exponential or diffusion) response-time extended multinomial processing tree (RT-MPT) models
by Klauer and Kellen (2018)
Multi-Patient Analysis of Genomic Markers
Preprocessing and analysis of genomic data. 'MPAgenomics'
provides wrappers from commonly used packages to streamline their repeated
manipulation, offering an easy-to-use pipeline. The segmentation of
successive multiple profiles is performed with an automatic choice of
parameters involved in the wrapped packages. Considering multiple profiles
in the same time, 'MPAgenomics' wraps efficient penalized regression methods
to select relevant markers associated with a given outcome.
Grimonprez et al. (2014)
Dynamic Models for Confidence and Response Time Distributions
Provides density functions for the joint distribution of
choice, response time and confidence for discrete confidence judgments
as well as functions for parameter fitting, prediction and simulation
for various dynamical models of decision confidence. All models are
explained in detail by Hellmann et al. (2023;
Preprint available at < https://osf.io/9jfqr/>, published version:
Estimated Marginal Means, aka Least-Squares Means
Obtain estimated marginal means (EMMs) for many linear, generalized
linear, and mixed models. Compute contrasts or linear functions of EMMs,
trends, and comparisons of slopes. Plots and other displays.
Least-squares means are discussed, and the term "estimated marginal means"
is suggested, in Searle, Speed, and Milliken (1980) Population marginal means
in the linear model: An alternative to least squares means, The American
Statistician 34(4), 216-221
Complete Functional Regulation Analysis
Calculates complete functional regulation analysis and visualize
the results in a single heatmap. The provided example data is for biological
data but the methodology can be used for large data sets to compare quantitative
entities that can be grouped. For example, a store might divide entities into
cloth, food, car products etc and want to see how sales changes in the groups
after some event. The theoretical background for the calculations are provided
in New insights into functional regulation in MS-based drug profiling, Ana Sofia
Carvalho, Henrik Molina & Rune Matthiesen, Scientific Reports
Item Selection and Exhaustive Search for Rasch Models
Automation of the item selection processes for Rasch scales by means of exhaustive search for suitable Rasch models (dichotomous, partial credit, rating-scale) in a list of item-combinations. The item-combinations to test can be either all possible combinations or item-combinations can be defined by several rules (forced inclusion of specific items, exclusion of combinations, minimum/maximum items of a subset of items). Tests for model fit and item fit include ordering of the thresholds, item fit-indices, likelihood ratio test, Martin-Löf test, Wald-like test, person-item distribution, person separation index, principal components of Rasch residuals, empirical representation of all raw scores or Rasch trees for detecting differential item functioning. The tests, their ordering and their parameters can be defined by the user. For parameter estimation and model tests, functions of the packages 'eRm', 'psychotools' or 'pairwise' can be used.
Tidy Population Genetics
We provide a tidy grammar of population genetics, facilitating
the manipulation and analysis of data on biallelic single nucleotide
polymorphisms (SNPs). 'tidypopgen' scales to very large genetic datasets
by storing genotypes on disk, and performing operations on them in
chunks, without ever loading all data in memory. The full
functionalities of the package are described in Carter et al. (2025)
Bridge Sampling for Marginal Likelihoods and Bayes Factors
Provides functions for estimating marginal likelihoods, Bayes
factors, posterior model probabilities, and normalizing constants in general,
via different versions of bridge sampling (Meng & Wong, 1996,
< https://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm>).
Gronau, Singmann, & Wagenmakers (2020)
R Bindings for Calling the 'Earth Engine' API
Earth Engine < https://earthengine.google.com/> client library for R. All of the 'Earth Engine' API classes, modules, and functions are made available. Additional functions implemented include importing (exporting) of Earth Engine spatial objects, extraction of time series, interactive map display, assets management interface, and metadata display. See < https://r-spatial.github.io/rgee/> for further details.