Found 1339 packages in 0.03 seconds
Differential Evolution Optimization in Pure R
Differential Evolution (DE) stochastic heuristic algorithms for
global optimization of problems with and without general constraints.
The aim is to curate a collection of its variants that
(1) do not sacrifice simplicity of design,
(2) are essentially tuning-free, and
(3) can be efficiently implemented directly in the R language.
Currently, it provides implementations of the algorithms 'jDE' by
Brest et al. (2006)
Multi-Objective Optimization in R
The 'rmoo' package is a framework for multi- and many-objective
optimization, which allows researchers and users versatility
in parameter configuration, as well as tools for analysis, replication
and visualization of results. The 'rmoo' package was built as a fork of
the 'GA' package by Luca Scrucca(2017)
Numerical Methods and Optimization in Finance
Functions, examples and data from the first and the second edition of "Numerical Methods and Optimization in Finance" by M. Gilli, D. Maringer and E. Schumann (2019, ISBN:978-0128150658). The package provides implementations of optimisation heuristics (Differential Evolution, Genetic Algorithms, Particle Swarm Optimisation, Simulated Annealing and Threshold Accepting), and other optimisation tools, such as grid search and greedy search. There are also functions for the valuation of financial instruments such as bonds and options, for portfolio selection and functions that help with stochastic simulations.
Linear Programming / Optimization
Can be used to solve Linear Programming / Linear Optimization problems by using the simplex algorithm.
Approximate String Matching, Fuzzy Text Search, and String Distance Functions
Implements an approximate string matching version of R's native
'match' function. Also offers fuzzy text search based on various string
distance measures. Can calculate various string distances based on edits
(Damerau-Levenshtein, Hamming, Levenshtein, optimal sting alignment), qgrams (q-
gram, cosine, jaccard distance) or heuristic metrics (Jaro, Jaro-Winkler). An
implementation of soundex is provided as well. Distances can be computed between
character vectors while taking proper care of encoding or between integer
vectors representing generic sequences. This package is built for speed and
runs in parallel by using 'openMP'. An API for C or C++ is exposed as well.
Reference: MPJ van der Loo (2014)
Discrete and Global Optimization Routines
The R package 'adagio' will provide methods and algorithms for (discrete) optimization, e.g. knapsack and subset sum procedures, derivative-free Nelder-Mead and Hooke-Jeeves minimization, and some (evolutionary) global optimization functions.
Evolutionary Learning of Globally Optimal Trees
Commonly used classification and regression tree methods like the CART algorithm are recursive partitioning methods that build the model in a forward stepwise search. Although this approach is known to be an efficient heuristic, the results of recursive tree methods are only locally optimal, as splits are chosen to maximize homogeneity at the next step only. An alternative way to search over the parameter space of trees is to use global optimization methods like evolutionary algorithms. The 'evtree' package implements an evolutionary algorithm for learning globally optimal classification and regression trees in R. CPU and memory-intensive tasks are fully computed in C++ while the 'partykit' package is leveraged to represent the resulting trees in R, providing unified infrastructure for summaries, visualizations, and predictions.
Header-Only C++ Mathematical Optimization Library for 'Armadillo'
'Ensmallen' is a templated C++ mathematical optimization library (by the 'MLPACK' team) that provides a simple set of abstractions for writing an objective function to optimize. Provided within are various standard and cutting-edge optimizers that include full-batch gradient descent techniques, small-batch techniques, gradient-free optimizers, and constrained optimization. The 'RcppEnsmallen' package includes the header files from the 'Ensmallen' library and pairs the appropriate header files from 'armadillo' through the 'RcppArmadillo' package. Therefore, users do not need to install 'Ensmallen' nor 'Armadillo' to use 'RcppEnsmallen'. Note that 'Ensmallen' is licensed under 3-Clause BSD, 'Armadillo' starting from 7.800.0 is licensed under Apache License 2, 'RcppArmadillo' (the 'Rcpp' bindings/bridge to 'Armadillo') is licensed under the GNU GPL version 2 or later. Thus, 'RcppEnsmallen' is also licensed under similar terms. Note that 'Ensmallen' requires a compiler that supports 'C++14' and 'Armadillo' 10.8.2 or later.
Adequacy of Probabilistic Models and General Purpose Optimization
The main application concerns to a new robust optimization package with two major contributions. The first contribution refers to the assessment of the adequacy of probabilistic models through a combination of several statistics, which measure the relative quality of statistical models for a given data set. The second one provides a general purpose optimization method based on meta-heuristics functions for maximizing or minimizing an arbitrary objective function.
Bayesian Optimization of Hyperparameters
A Pure R implementation of Bayesian Global Optimization with Gaussian Processes.