Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1339 packages in 0.03 seconds

DEoptimR — by Eduardo L. T. Conceicao, 7 months ago

Differential Evolution Optimization in Pure R

Differential Evolution (DE) stochastic heuristic algorithms for global optimization of problems with and without general constraints. The aim is to curate a collection of its variants that (1) do not sacrifice simplicity of design, (2) are essentially tuning-free, and (3) can be efficiently implemented directly in the R language. Currently, it provides implementations of the algorithms 'jDE' by Brest et al. (2006) for single-objective optimization and 'NCDE' by Qu et al. (2012) for multimodal optimization (single-objective problems with multiple solutions).

svn://svn.r-forge.r-project.org/svnroot/robustbase/pkg/DEoptimR

rmoo — by Francisco Benitez, 3 years ago

Multi-Objective Optimization in R

The 'rmoo' package is a framework for multi- and many-objective optimization, which allows researchers and users versatility in parameter configuration, as well as tools for analysis, replication and visualization of results. The 'rmoo' package was built as a fork of the 'GA' package by Luca Scrucca(2017) and implementing the Non-Dominated Sorting Genetic Algorithms proposed by K. Deb's.

NMOF — by Enrico Schumann, 8 months ago

Numerical Methods and Optimization in Finance

Functions, examples and data from the first and the second edition of "Numerical Methods and Optimization in Finance" by M. Gilli, D. Maringer and E. Schumann (2019, ISBN:978-0128150658). The package provides implementations of optimisation heuristics (Differential Evolution, Genetic Algorithms, Particle Swarm Optimisation, Simulated Annealing and Threshold Accepting), and other optimisation tools, such as grid search and greedy search. There are also functions for the valuation of financial instruments such as bonds and options, for portfolio selection and functions that help with stochastic simulations.

linprog — by Arne Henningsen, 3 years ago

Linear Programming / Optimization

Can be used to solve Linear Programming / Linear Optimization problems by using the simplex algorithm.

stringdist — by Mark van der Loo, 6 months ago

Approximate String Matching, Fuzzy Text Search, and String Distance Functions

Implements an approximate string matching version of R's native 'match' function. Also offers fuzzy text search based on various string distance measures. Can calculate various string distances based on edits (Damerau-Levenshtein, Hamming, Levenshtein, optimal sting alignment), qgrams (q- gram, cosine, jaccard distance) or heuristic metrics (Jaro, Jaro-Winkler). An implementation of soundex is provided as well. Distances can be computed between character vectors while taking proper care of encoding or between integer vectors representing generic sequences. This package is built for speed and runs in parallel by using 'openMP'. An API for C or C++ is exposed as well. Reference: MPJ van der Loo (2014) .

adagio — by Hans W. Borchers, 2 years ago

Discrete and Global Optimization Routines

The R package 'adagio' will provide methods and algorithms for (discrete) optimization, e.g. knapsack and subset sum procedures, derivative-free Nelder-Mead and Hooke-Jeeves minimization, and some (evolutionary) global optimization functions.

evtree — by Thomas Grubinger, 6 years ago

Evolutionary Learning of Globally Optimal Trees

Commonly used classification and regression tree methods like the CART algorithm are recursive partitioning methods that build the model in a forward stepwise search. Although this approach is known to be an efficient heuristic, the results of recursive tree methods are only locally optimal, as splits are chosen to maximize homogeneity at the next step only. An alternative way to search over the parameter space of trees is to use global optimization methods like evolutionary algorithms. The 'evtree' package implements an evolutionary algorithm for learning globally optimal classification and regression trees in R. CPU and memory-intensive tasks are fully computed in C++ while the 'partykit' package is leveraged to represent the resulting trees in R, providing unified infrastructure for summaries, visualizations, and predictions.

RcppEnsmallen — by James Joseph Balamuta, 7 months ago

Header-Only C++ Mathematical Optimization Library for 'Armadillo'

'Ensmallen' is a templated C++ mathematical optimization library (by the 'MLPACK' team) that provides a simple set of abstractions for writing an objective function to optimize. Provided within are various standard and cutting-edge optimizers that include full-batch gradient descent techniques, small-batch techniques, gradient-free optimizers, and constrained optimization. The 'RcppEnsmallen' package includes the header files from the 'Ensmallen' library and pairs the appropriate header files from 'armadillo' through the 'RcppArmadillo' package. Therefore, users do not need to install 'Ensmallen' nor 'Armadillo' to use 'RcppEnsmallen'. Note that 'Ensmallen' is licensed under 3-Clause BSD, 'Armadillo' starting from 7.800.0 is licensed under Apache License 2, 'RcppArmadillo' (the 'Rcpp' bindings/bridge to 'Armadillo') is licensed under the GNU GPL version 2 or later. Thus, 'RcppEnsmallen' is also licensed under similar terms. Note that 'Ensmallen' requires a compiler that supports 'C++14' and 'Armadillo' 10.8.2 or later.

AdequacyModel — by Pedro Rafael Diniz Marinho, 9 years ago

Adequacy of Probabilistic Models and General Purpose Optimization

The main application concerns to a new robust optimization package with two major contributions. The first contribution refers to the assessment of the adequacy of probabilistic models through a combination of several statistics, which measure the relative quality of statistical models for a given data set. The second one provides a general purpose optimization method based on meta-heuristics functions for maximizing or minimizing an arbitrary objective function.

rBayesianOptimization — by Yachen Yan, a year ago

Bayesian Optimization of Hyperparameters

A Pure R implementation of Bayesian Global Optimization with Gaussian Processes.