Found 64 packages in 0.02 seconds

Sparse and Dense Matrix Classes and Methods

A rich hierarchy of matrix classes, including triangular, symmetric, and diagonal matrices, both dense and sparse and with pattern, logical and numeric entries. Numerous methods for and operations on these matrices, using 'LAPACK' and 'SuiteSparse' libraries.

"Finding Groups in Data": Cluster Analysis Extended Rousseeuw et al.

Methods for Cluster analysis. Much extended the original from Peter Rousseeuw, Anja Struyf and Mia Hubert, based on Kaufman and Rousseeuw (1990) "Finding Groups in Data".

Basic Robust Statistics

"Essential" Robust Statistics. Tools allowing to analyze data with robust methods. This includes regression methodology including model selections and multivariate statistics where we strive to cover the book "Robust Statistics, Theory and Methods" by 'Maronna, Martin and Yohai'; Wiley 2006.

Utilities from 'Seminar fuer Statistik' ETH Zurich

Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, quite a few related to graphics; some were ported from S-plus.

Matrix Exponential, Log, 'etc'

Computation of the matrix exponential, logarithm, sqrt, and related quantities.

Bitwise Operations

Functions for bitwise operations on integer vectors.

R MPFR - Multiple Precision Floating-Point Reliable

Arithmetic (via S4 classes and methods) for arbitrary precision floating point numbers, including transcendental ("special") functions. To this end, the package interfaces to the 'LGPL' licensed 'MPFR' (Multiple Precision Floating-Point Reliable) Library which itself is based on the 'GMP' (GNU Multiple Precision) Library.

Multivariate Dependence with Copulas

Classes (S4) of commonly used elliptical, Archimedean, extreme-value and other copula families, as well as their rotations, mixtures and asymmetrizations. Nested Archimedean copulas, related tools and special functions. Methods for density, distribution, random number generation, bivariate dependence measures, Rosenblatt transform, Kendall distribution function, perspective and contour plots. Fitting of copula models with potentially partly fixed parameters, including standard errors. Serial independence tests, copula specification tests (independence, exchangeability, radial symmetry, extreme-value dependence, goodness-of-fit) and model selection based on cross-validation. Empirical copula, smoothed versions, and non-parametric estimators of the Pickands dependence function.

Multivariate Normal and t Distributions

Computes multivariate normal and t probabilities, quantiles, random deviates and densities.

Stable Distribution Functions

Density, Probability and Quantile functions, and random number generation for (skew) stable distributions, using the parametrizations of Nolan.