Found 1652 packages in 0.01 seconds
Models Multivariate Cases Using Random Forests
Models and predicts multiple output features in single random forest considering the
linear relation among the output features, see details in Rahman et al (2017)
Gibbs Random Fields Analysis
Allows calculation on, and sampling from Gibbs Random Fields, and more precisely general homogeneous Potts model. The primary tool is the exact computation of the intractable normalising constant for small rectangular lattices. Beside the latter function, it contains method that give exact sample from the likelihood for small enough rectangular lattices or approximate sample from the likelihood using MCMC samplers for large lattices.
Meta-Analysis
Functions for simple fixed and random effects meta-analysis for two-sample comparisons and cumulative meta-analyses. Draws standard summary plots, funnel plots, and computes summaries and tests for association and heterogeneity.
Modeling of Ordinal Random Variables via Softmax Regression
Supports the modeling of ordinal random variables,
like the outcomes of races, via Softmax regression,
under the Harville
Random Portfolio Generation
A collection of tools used to generate various types of random portfolios. The weights of these portfolios are random variables derived from truncated continuous random variables.
Boost C++ Header Files
Boost provides free peer-reviewed portable C++ source libraries. A large part of Boost is provided as C++ template code which is resolved entirely at compile-time without linking. This package aims to provide the most useful subset of Boost libraries for template use among CRAN packages. By placing these libraries in this package, we offer a more efficient distribution system for CRAN as replication of this code in the sources of other packages is avoided. As of release 1.84.0-0, the following Boost libraries are included: 'accumulators' 'algorithm' 'align' 'any' 'atomic' 'beast' 'bimap' 'bind' 'circular_buffer' 'compute' 'concept' 'config' 'container' 'date_time' 'detail' 'dynamic_bitset' 'exception' 'flyweight' 'foreach' 'functional' 'fusion' 'geometry' 'graph' 'heap' 'icl' 'integer' 'interprocess' 'intrusive' 'io' 'iostreams' 'iterator' 'lambda2' 'math' 'move' 'mp11' 'mpl' 'multiprecision' 'numeric' 'pending' 'phoenix' 'polygon' 'preprocessor' 'process' 'propery_tree' 'qvm' 'random' 'range' 'scope_exit' 'smart_ptr' 'sort' 'spirit' 'tuple' 'type_traits' 'typeof' 'unordered' 'url' 'utility' 'uuid'.
Discrete Weibull Distributions (Type 1 and 3)
Probability mass function, distribution function, quantile function, random generation and parameter estimation for the type I and III discrete Weibull distributions.
R Interface to the 'DieHarder' RNG Test Suite
The 'RDieHarder' package provides an R interface to the 'DieHarder' suite of random number generators and tests that was developed by Robert G. Brown and David Bauer, extending earlier work by George Marsaglia and others. The 'DieHarder' library code is included.
Linear Models for Panel Data
A set of estimators for models and (robust) covariance matrices, and tests for panel data
econometrics, including within/fixed effects, random effects, between, first-difference,
nested random effects as well as instrumental-variable (IV) and Hausman-Taylor-style models,
panel generalized method of moments (GMM) and general FGLS models,
mean groups (MG), demeaned MG, and common correlated effects (CCEMG) and pooled (CCEP) estimators
with common factors, variable coefficients and limited dependent variables models.
Test functions include model specification, serial correlation, cross-sectional dependence,
panel unit root and panel Granger (non-)causality. Typical references are general econometrics
text books such as Baltagi (2021), Econometric Analysis of Panel Data (
Bayesian Adaptive Randomization
Bayesian adaptive randomization is also called outcome adaptive randomization, which is increasingly used in clinical trials.