Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1578 packages in 0.08 seconds

bbotk — by Marc Becker, a month ago

Black-Box Optimization Toolkit

Features highly configurable search spaces via the 'paradox' package and optimizes every user-defined objective function. The package includes several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in 'mlr3hyperband'). bbotk is the base package of 'mlr3tuning', 'mlr3fselect' and 'miesmuschel'.

nor1mix — by Martin Maechler, a year ago

Normal aka Gaussian 1-d Mixture Models

Onedimensional Normal (i.e. Gaussian) Mixture Models (S3) Classes, for, e.g., density estimation or clustering algorithms research and teaching; providing the widely used Marron-Wand densities. Efficient random number generation and graphics. Fitting to data by efficient ML (Maximum Likelihood) or traditional EM estimation.

gdistance — by Andrew Marx, 2 years ago

Distances and Routes on Geographical Grids

Provides classes and functions to calculate various distance measures and routes in heterogeneous geographic spaces represented as grids. The package implements measures to model dispersal histories first presented by van Etten and Hijmans (2010) . Least-cost distances as well as more complex distances based on (constrained) random walks can be calculated. The distances implemented in the package are used in geographical genetics, accessibility indicators, and may also have applications in other fields of geospatial analysis.

PSweight — by Yukang Zeng, 4 months ago

Propensity Score Weighting for Causal Inference with Observational Studies and Randomized Trials

Supports propensity score weighting analysis of observational studies and randomized trials. Enables the estimation and inference of average causal effects with binary and multiple treatments using overlap weights (ATO), inverse probability of treatment weights (ATE), average treatment effect among the treated weights (ATT), matching weights (ATM) and entropy weights (ATEN), with and without propensity score trimming. These weights are members of the family of balancing weights introduced in Li, Morgan and Zaslavsky (2018) and Li and Li (2019) .

rvec — by John Bryant, 2 days ago

Vectors Representing Random Variables

Random vectors, called rvecs. An rvec holds multiple draws, but tries to behave like a standard R vector, including working well in data frames. Rvecs are useful for analysing output from a simulation or a Bayesian analysis.

Boruta — by Miron Bartosz Kursa, 3 years ago

Wrapper Algorithm for All Relevant Feature Selection

An all relevant feature selection wrapper algorithm. It finds relevant features by comparing original attributes' importance with importance achievable at random, estimated using their permuted copies (shadows).

mvmeta — by Antonio Gasparrini, 6 years ago

Multivariate and Univariate Meta-Analysis and Meta-Regression

Collection of functions to perform fixed and random-effects multivariate and univariate meta-analysis and meta-regression.

ri2 — by Alexander Coppock, 3 years ago

Randomization Inference for Randomized Experiments

Randomization inference procedures for simple and complex randomized designs, including multi-armed trials, as described in Gerber and Green (2012, ISBN: 978-0393979954). Users formally describe their randomization procedure and test statistic. The randomization distribution of the test statistic under some null hypothesis is efficiently simulated.

blockrand — by Greg Snow, 5 years ago

Randomization for Block Random Clinical Trials

Create randomizations for block random clinical trials. Can also produce a pdf file of randomization cards.

spatstat — by Adrian Baddeley, 2 months ago

Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.