Found 1332 packages in 0.01 seconds
R Interface to Stan
User-facing R functions are provided to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the 'StanHeaders' package. The Stan project develops a probabilistic programming language that implements full Bayesian statistical inference via Markov Chain Monte Carlo, rough Bayesian inference via 'variational' approximation, and (optionally penalized) maximum likelihood estimation via optimization. In all three cases, automatic differentiation is used to quickly and accurately evaluate gradients without burdening the user with the need to derive the partial derivatives.
Black-Box Optimization Toolkit
Features highly configurable search spaces via the 'paradox' package and optimizes every user-defined objective function. The package includes several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in 'mlr3hyperband'). bbotk is the base package of 'mlr3tuning', 'mlr3fselect' and 'miesmuschel'.
The R to MOSEK Optimization Interface
This is a meta-package designed to support the installation of Rmosek (>= 6.0) and bring the optimization facilities of MOSEK (>= 6.0) to the R-language. The interface supports large-scale optimization of many kinds: Mixed-integer and continuous linear, second-order cone, exponential cone and power cone optimization, as well as continuous semidefinite optimization. Rmosek and the R-language are open-source projects. MOSEK is a proprietary product, but unrestricted trial and academic licenses are available.
Unconstrained Optimization using the Subplex Algorithm
The subplex algorithm for unconstrained optimization, developed by Tom Rowan.
Maximum Likelihood Estimation and Related Tools
Functions for Maximum Likelihood (ML) estimation, non-linear optimization, and related tools. It includes a unified way to call different optimizers, and classes and methods to handle the results from the Maximum Likelihood viewpoint. It also includes a number of convenience tools for testing and developing your own models.
Simple Tools for Examining and Cleaning Dirty Data
The main janitor functions can: perfectly format data.frame column names; provide quick counts of variable combinations (i.e., frequency tables and crosstabs); and explore duplicate records. Other janitor functions nicely format the tabulation results. These tabulate-and-report functions approximate popular features of SPSS and Microsoft Excel. This package follows the principles of the "tidyverse" and works well with the pipe function %>%. janitor was built with beginning-to-intermediate R users in mind and is optimized for user-friendliness.
Helpers for Parameters in Black-Box Optimization, Tuning and Machine Learning
Functions for parameter descriptions and operations in black-box optimization, tuning and machine learning. Parameters can be described (type, constraints, defaults, etc.), combined to parameter sets and can in general be programmed on. A useful OptPath object (archive) to log function evaluations is also provided.
Single and Multi-Objective Optimization Test Functions
Provides generators for a high number of both single- and multi- objective test functions which are frequently used for the benchmarking of (numerical) optimization algorithms. Moreover, it offers a set of convenient functions to generate, plot and work with objective functions.
Multivariate and Propensity Score Matching with Balance Optimization
Provides functions for multivariate and propensity score matching
and for finding optimal balance based on a genetic search algorithm.
A variety of univariate and multivariate metrics to
determine if balance has been obtained are also provided. For
details, see the paper by Jasjeet Sekhon
(2007,
Evolutionary Multiobjective Optimization Algorithms
Collection of building blocks for the design and analysis of evolutionary multiobjective optimization algorithms.