Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 93 packages in 0.01 seconds

dqrng — by Ralf Stubner, 2 years ago

Fast Pseudo Random Number Generators

Several fast random number generators are provided as C++ header only libraries: The PCG family by O'Neill (2014 < https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf>) as well as the Xoroshiro / Xoshiro family by Blackman and Vigna (2021 ). In addition fast functions for generating random numbers according to a uniform, normal and exponential distribution are included. The latter two use the Ziggurat algorithm originally proposed by Marsaglia and Tsang (2000, ). The fast sampling methods support unweighted sampling both with and without replacement. These functions are exported to R and as a C++ interface and are enabled for use with the default 64 bit generator from the PCG family, Xoroshiro128+/++/** and Xoshiro256+/++/** as well as the 64 bit version of the 20 rounds Threefry engine (Salmon et al., 2011, ) as provided by the package 'sitmo'.

bridgesampling — by Quentin F. Gronau, 2 months ago

Bridge Sampling for Marginal Likelihoods and Bayes Factors

Provides functions for estimating marginal likelihoods, Bayes factors, posterior model probabilities, and normalizing constants in general, via different versions of bridge sampling (Meng & Wong, 1996, < https://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm>). Gronau, Singmann, & Wagenmakers (2020) .

bayestestR — by Dominique Makowski, 5 months ago

Understand and Describe Bayesian Models and Posterior Distributions

Provides utilities to describe posterior distributions and Bayesian models. It includes point-estimates such as Maximum A Posteriori (MAP), measures of dispersion (Highest Density Interval - HDI; Kruschke, 2015 ) and indices used for null-hypothesis testing (such as ROPE percentage, pd and Bayes factors). References: Makowski et al. (2021) .

Rmosek — by Henrik A. Friberg, 6 years ago

The R to MOSEK Optimization Interface

This is a meta-package designed to support the installation of Rmosek (>= 6.0) and bring the optimization facilities of MOSEK (>= 6.0) to the R-language. The interface supports large-scale optimization of many kinds: Mixed-integer and continuous linear, second-order cone, exponential cone and power cone optimization, as well as continuous semidefinite optimization. Rmosek and the R-language are open-source projects. MOSEK is a proprietary product, but unrestricted trial and academic licenses are available.

MPTmultiverse — by Henrik Singmann, 6 years ago

Multiverse Analysis of Multinomial Processing Tree Models

Statistical or cognitive modeling usually requires a number of more or less arbitrary choices creating one specific path through a 'garden of forking paths'. The multiverse approach (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016, ) offers a principled alternative in which results for all possible combinations of reasonable modeling choices are reported. MPTmultiverse performs a multiverse analysis for multinomial processing tree (MPT, Riefer & Batchelder, 1988, ) models combining maximum-likelihood/frequentist and Bayesian estimation approaches with different levels of pooling (i.e., data aggregation). For the frequentist approaches, no pooling (with and without parametric or nonparametric bootstrap) and complete pooling are implemented using MPTinR < https://cran.r-project.org/package=MPTinR>. For the Bayesian approaches, no pooling, complete pooling, and three different variants of partial pooling are implemented using TreeBUGS < https://cran.r-project.org/package=TreeBUGS>. The main function is fit_mpt() who performs the multiverse analysis in one call.

pairwise — by Joerg-Henrik Heine, 4 months ago

Rasch Model Parameters by Pairwise Algorithm

Performs the explicit calculation -- not estimation! -- of the Rasch item parameters for dichotomous and polytomous item responses, using a pairwise comparison approach. Person parameters (WLE) are calculated according to Warm's weighted likelihood approach.

acss — by Henrik Singmann, 8 months ago

Algorithmic Complexity for Short Strings

Main functionality is to provide the algorithmic complexity for short strings, an approximation of the Kolmogorov Complexity of a short string using the coding theorem method (see ?acss). The database containing the complexity is provided in the data only package acss.data, this package provides functions accessing the data such as prob_random returning the posterior probability that a given string was produced by a random process. In addition, two traditional (but problematic) measures of complexity are also provided: entropy and change complexity.

gratia — by Gavin L. Simpson, 5 months ago

Graceful 'ggplot'-Based Graphics and Other Functions for GAMs Fitted Using 'mgcv'

Graceful 'ggplot'-based graphics and utility functions for working with generalized additive models (GAMs) fitted using the 'mgcv' package. Provides a reimplementation of the plot() method for GAMs that 'mgcv' provides, as well as 'tidyverse' compatible representations of estimated smooths.

MPTinR — by Henrik Singmann, 5 years ago

Analyze Multinomial Processing Tree Models

Provides a user-friendly way for the analysis of multinomial processing tree (MPT) models (e.g., Riefer, D. M., and Batchelder, W. H. [1988]. Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339) for single and multiple datasets. The main functions perform model fitting and model selection. Model selection can be done using AIC, BIC, or the Fisher Information Approximation (FIA) a measure based on the Minimum Description Length (MDL) framework. The model and restrictions can be specified in external files or within an R script in an intuitive syntax or using the context-free language for MPTs. The 'classical' .EQN file format for model files is also supported. Besides MPTs, this package can fit a wide variety of other cognitive models such as SDT models (see fit.model). It also supports multicore fitting and FIA calculation (using the snowfall package), can generate or bootstrap data for simulations, and plot predicted versus observed data.

confreq — by Joerg-Henrik Heine, 4 months ago

Configural Frequencies Analysis Using Log-Linear Modeling

Offers several functions for Configural Frequencies Analysis (CFA), which is a useful statistical tool for the analysis of multiway contingency tables. CFA was introduced by G. A. Lienert as 'Konfigurations Frequenz Analyse - KFA'. Lienert, G. A. (1971). Die Konfigurationsfrequenzanalyse: I. Ein neuer Weg zu Typen und Syndromen. Zeitschrift für Klinische Psychologie und Psychotherapie, 19(2), 99–115.