Found 2054 packages in 0.04 seconds
Visualization via Beanplots (Like Boxplot/Stripchart/Violin Plot)
Plots univariate comparison graphs, an alternative to boxplot/stripchart/violin plot.
Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis
Functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. Traditional canonical discriminant analysis is restricted to a one-way 'MANOVA' design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The 'candisc' package generalizes this to higher-way 'MANOVA' designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide low-rank (1D, 2D, 3D) visualizations of terms in an 'mlm' via the 'plot.candisc' and 'heplot.candisc' methods. Related plots are now provided for canonical correlation analysis when all predictors are quantitative.
An Implementation of Grammar of Graphics for Graphs and Networks
The grammar of graphics as implemented in ggplot2 is a poor fit for graph and network visualizations due to its reliance on tabular data input. ggraph is an extension of the ggplot2 API tailored to graph visualizations and provides the same flexible approach to building up plots layer by layer.
Visualizing Hypothesis Tests in Multivariate Linear Models
Provides HE plot and other functions for visualizing hypothesis tests in multivariate linear models. HE plots represent sums-of-squares-and-products matrices for linear hypotheses and for error using ellipses (in two dimensions) and ellipsoids (in three dimensions). It also provides other tools for analysis and graphical display of the models such as robust methods and homogeneity of variance covariance matrices. The related 'candisc' package provides visualizations in a reduced-rank canonical discriminant space when there are more than a few response variables.
A 'Linter' for R Code
Checks adherence to a given style, syntax errors and possible semantic issues. Supports on the fly checking of R code edited with 'RStudio IDE', 'Emacs', 'Vim', 'Sublime Text', 'Atom' and 'Visual Studio Code'.
Visualizing Association Rules and Frequent Itemsets
Extends package 'arules' with various visualization techniques for association rules and itemsets. The package also includes several interactive visualizations for rule exploration. Michael Hahsler (2017)
Interpretable Bivariate Density Visualization with 'ggplot2'
The 'ggplot2' package provides simple functions for visualizing contours of 2-d kernel density estimates. 'ggdensity' implements several additional density estimators as well as more interpretable visualizations based on highest density regions instead of the traditional height of the estimated density surface.
Display and Analyze ROC Curves
Tools for visualizing, smoothing and comparing receiver operating characteristic (ROC curves). (Partial) area under the curve (AUC) can be compared with statistical tests based on U-statistics or bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.
Some Useful Functions for Statistics and Visualization
Offers a range of utilities and functions for everyday programming tasks. 1.Data Manipulation. Such as grouping and merging, column splitting, and character expansion. 2.File Handling. Read and convert files in popular formats. 3.Plotting Assistance. Helpful utilities for generating color palettes, validating color formats, and adding transparency. 4.Statistical Analysis. Includes functions for pairwise comparisons and multiple testing corrections, enabling perform statistical analyses with ease. 5.Graph Plotting, Provides efficient tools for creating doughnut plot and multi-layered doughnut plot; Venn diagrams, including traditional Venn diagrams, upset plots, and flower plots; Simplified functions for creating stacked bar plots, or a box plot with alphabets group for multiple comparison group.
Analysis and Visualization of Droplet Digital PCR in R and on the Web
An interface to explore, analyze, and visualize droplet digital PCR (ddPCR) data in R. This is the first non-proprietary software for analyzing two-channel ddPCR data. An interactive tool was also created and is available online to facilitate this analysis for anyone who is not comfortable with using R.