Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2300 packages in 0.07 seconds

ggmulti — by Zehao Xu, 3 months ago

High Dimensional Data Visualization

It provides materials (i.e. 'serial axes' objects, Andrew's plot, various glyphs for scatter plot) to visualize high dimensional data.

Mercator — by Kevin R. Coombes, 8 months ago

Clustering and Visualizing Distance Matrices

Defines the classes used to explore, cluster and visualize distance matrices, especially those arising from binary data. See Abrams and colleagues, 2021, .

likert — by Jason Bryer, 6 months ago

Analysis and Visualization Likert Items

An approach to analyzing Likert response items, with an emphasis on visualizations. The stacked bar plot is the preferred method for presenting Likert results. Tabular results are also implemented along with density plots to assist researchers in determining whether Likert responses can be used quantitatively instead of qualitatively. See the likert(), summary.likert(), and plot.likert() functions to get started.

PairViz — by Catherine Hurley, 3 years ago

Visualization using Graph Traversal

Improving graphics by ameliorating order effects, using Eulerian tours and Hamiltonian decompositions of graphs. References for the methods presented here are C.B. Hurley and R.W. Oldford (2010) and C.B. Hurley and R.W. Oldford (2011) .

rayshader — by Tyler Morgan-Wall, 2 years ago

Create Maps and Visualize Data in 2D and 3D

Uses a combination of raytracing and multiple hill shading methods to produce 2D and 3D data visualizations and maps. Includes water detection and layering functions, programmable color palette generation, several built-in textures for hill shading, 2D and 3D plotting options, a built-in path tracer, 'Wavefront' OBJ file export, and the ability to save 3D visualizations to a 3D printable format.

GeneralizedUmatrix — by Michael Thrun, a year ago

Credible Visualization for Two-Dimensional Projections of Data

Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018] . This could lead to a misleading interpretation of the underlying structures [Thrun, 2018]. By means of the 3D topographic map the generalized Umatrix is able to depict errors of these two-dimensional scatter plots. The package is derived from the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) and the main algorithm called simplified self-organizing map for dimensionality reduction methods is published in .

visualize — by James Balamuta, 2 years ago

Graph Probability Distributions with User Supplied Parameters and Statistics

Graphs the pdf or pmf and highlights what area or probability is present in user defined locations. Visualize is able to provide lower tail, bounded, upper tail, and two tail calculations. Supports strict and equal to inequalities. Also provided on the graph is the mean and variance of the distribution.

ggridges — by Claus O. Wilke, 5 months ago

Ridgeline Plots in 'ggplot2'

Ridgeline plots provide a convenient way of visualizing changes in distributions over time or space. This package enables the creation of such plots in 'ggplot2'.

tabula — by Nicolas Frerebeau, 5 months ago

Analysis and Visualization of Archaeological Count Data

An easy way to examine archaeological count data. This package provides several tests and measures of diversity: heterogeneity and evenness (Brillouin, Shannon, Simpson, etc.), richness and rarefaction (Chao1, Chao2, ACE, ICE, etc.), turnover and similarity (Brainerd-Robinson, etc.). It allows to easily visualize count data and statistical thresholds: rank vs abundance plots, heatmaps, Ford (1962) and Bertin (1977) diagrams, etc.

timevis — by Dean Attali, 3 years ago

Create Interactive Timeline Visualizations in R

Create rich and fully interactive timeline visualizations. Timelines can be included in Shiny apps or R markdown documents. 'timevis' includes an extensive API to manipulate a timeline after creation, and supports getting data out of the visualization into R. Based on the 'vis.js' Timeline JavaScript library.