Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 91 packages in 0.01 seconds

gratia — by Gavin L. Simpson, 3 months ago

Graceful 'ggplot'-Based Graphics and Other Functions for GAMs Fitted Using 'mgcv'

Graceful 'ggplot'-based graphics and utility functions for working with generalized additive models (GAMs) fitted using the 'mgcv' package. Provides a reimplementation of the plot() method for GAMs that 'mgcv' provides, as well as 'tidyverse' compatible representations of estimated smooths.

convertid — by Vidal Fey, 10 months ago

Convert Gene IDs Between Each Other and Fetch Annotations from Biomart

Gene Symbols or Ensembl Gene IDs are converted using the Bimap interface in 'AnnotationDbi' in convertId2() but that function is only provided as fallback mechanism for the most common use cases in data analysis. The main function in the package is convert.bm() which queries BioMart using the full capacity of the API provided through the 'biomaRt' package. Presets and defaults are provided for convenience but all "marts", "filters" and "attributes" can be set by the user. Function convert.alias() converts Gene Symbols to Aliases and vice versa and function likely_symbol() attempts to determine the most likely current Gene Symbol.

AutoPipe — by Karam Daka, 7 years ago

Automated Transcriptome Classifier Pipeline: Comprehensive Transcriptome Analysis

An unsupervised fully-automated pipeline for transcriptome analysis or a supervised option to identify characteristic genes from predefined subclasses. We rely on the 'pamr' < http://www.bioconductor.org/packages//2.7/bioc/html/pamr.html> clustering algorithm to cluster the Data and then draw a heatmap of the clusters with the most significant genes and the least significant genes according to the 'pamr' algorithm. This way we get easy to grasp heatmaps that show us for each cluster which are the clusters most defining genes.

crew — by William Michael Landau, 3 months ago

A Distributed Worker Launcher Framework

In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The 'NNG'-powered 'mirai' R package by Gao (2023) is a sleek and sophisticated scheduler that efficiently processes these intense workloads. The 'crew' package extends 'mirai' with a unifying interface for third-party worker launchers. Inspiration also comes from packages. 'future' by Bengtsson (2021) , 'rrq' by FitzJohn and Ashton (2023) < https://github.com/mrc-ide/rrq>, 'clustermq' by Schubert (2019) ), and 'batchtools' by Lang, Bischel, and Surmann (2017) .

ctsmTMB — by Phillip Vetter, 3 months ago

Continuous Time Stochastic Modelling using Template Model Builder

Perform state and parameter inference, and forecasting, in stochastic state-space systems using the 'ctsmTMB' class. This class, built with the 'R6' package, provides a user-friendly interface for defining and handling state-space models. Inference is based on maximum likelihood estimation, with derivatives efficiently computed through automatic differentiation enabled by the 'TMB'/'RTMB' packages (Kristensen et al., 2016) . The available inference methods include Kalman filters, in addition to a Laplace approximation-based smoothing method. For further details of these methods refer to the documentation of the 'CTSMR' package < https://ctsm.info/ctsmr-reference.pdf> and Thygesen (2025) . Forecasting capabilities include moment predictions and stochastic path simulations, both implemented in 'C++' using 'Rcpp' (Eddelbuettel et al., 2018) for computational efficiency.

IDSpatialStats — by Justin Lessler, a year ago

Estimate Global Clustering in Infectious Disease

Implements various novel and standard clustering statistics and other analyses useful for understanding the spread of infectious disease.

hkclustering — by Ilan Fridman Rojas, 8 years ago

Ensemble Clustering using K Means and Hierarchical Clustering

Implements an ensemble algorithm for clustering combining a k-means and a hierarchical clustering approach.

whitewater — by Josh Erickson, 3 years ago

Parallel Processing Options for Package 'dataRetrieval'

Provides methods for retrieving United States Geological Survey (USGS) water data using sequential and parallel processing (Bengtsson, 2022 ). In addition to parallel methods, data wrangling and additional statistical attributes are provided.

RoBTT — by František Bartoš, a year ago

Robust Bayesian T-Test

An implementation of Bayesian model-averaged t-tests that allows users to draw inferences about the presence versus absence of an effect, variance heterogeneity, and potential outliers. The 'RoBTT' package estimates ensembles of models created by combining competing hypotheses and applies Bayesian model averaging using posterior model probabilities. Users can obtain model-averaged posterior distributions and inclusion Bayes factors, accounting for uncertainty in the data-generating process (Maier et al., 2024, ). The package also provides a truncated likelihood version of the model-averaged t-test, enabling users to exclude potential outliers without introducing bias (Godmann et al., 2024, ). Users can specify a wide range of informative priors for all parameters of interest. The package offers convenient functions for summary, visualization, and fit diagnostics.

aeddo — by Lasse Engbo Christiansen, 2 years ago

Automated and Early Detection of Disease Outbreaks

A powerful tool for automating the early detection of disease outbreaks in time series data. 'aeddo' employs advanced statistical methods, including hierarchical models, in an innovative manner to effectively characterize outbreak signals. It is particularly useful for epidemiologists, public health professionals, and researchers seeking to identify and respond to disease outbreaks in a timely fashion. For a detailed reference on hierarchical models, consult Henrik Madsen and Poul Thyregod's book (2011), ISBN: 9781420091557.