Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2325 packages in 0.01 seconds

ScatterDensity — by Michael Thrun, 6 months ago

Density Estimation and Visualization of 2D Scatter Plots

The user has the option to utilize the two-dimensional density estimation techniques called smoothed density published by Eilers and Goeman (2004) , and pareto density which was evaluated for univariate data by Thrun, Gehlert and Ultsch, 2020 . Moreover, it provides visualizations of the density estimation in the form of two-dimensional scatter plots in which the points are color-coded based on increasing density. Colors are defined by the one-dimensional clustering technique called 1D distribution cluster algorithm (DDCAL) published by Lux and Rinderle-Ma (2023) .

StatRank — by Hossein Azari Soufiani, 10 years ago

Statistical Rank Aggregation: Inference, Evaluation, and Visualization

A set of methods to implement Generalized Method of Moments and Maximal Likelihood methods for Random Utility Models. These methods are meant to provide inference on rank comparison data. These methods accept full, partial, and pairwise rankings, and provides methods to break down full or partial rankings into their pairwise components. Please see Generalized Method-of-Moments for Rank Aggregation from NIPS 2013 for a description of some of our methods.

ggforce — by Thomas Lin Pedersen, 8 months ago

Accelerating 'ggplot2'

The aim of 'ggplot2' is to aid in visual data investigations. This focus has led to a lack of facilities for composing specialised plots. 'ggforce' aims to be a collection of mainly new stats and geoms that fills this gap. All additional functionality is aimed to come through the official extension system so using 'ggforce' should be a stable experience.

signal — by Uwe Ligges, 2 years ago

Signal Processing

A set of signal processing functions originally written for 'Matlab' and 'Octave'. Includes filter generation utilities, filtering functions, resampling routines, and visualization of filter models. It also includes interpolation functions.

ontologyPlot — by Daniel Greene, 2 years ago

Visualising Sets of Ontological Terms

Create R plots visualising ontological terms and the relationships between them with various graphical options - Greene et al. 2017 .

GOplot — by Wencke Walter, 10 years ago

Visualization of Functional Analysis Data

Implementation of multilayered visualizations for enhanced graphical representation of functional analysis data. It combines and integrates omics data derived from expression and functional annotation enrichment analyses. Its plotting functions have been developed with an hierarchical structure in mind: starting from a general overview to identify the most enriched categories (modified bar plot, bubble plot) to a more detailed one displaying different types of relevant information for the molecules in a given set of categories (circle plot, chord plot, cluster plot, Venn diagram, heatmap).

ndtv — by Skye Bender-deMoll, 2 years ago

Network Dynamic Temporal Visualizations

Renders dynamic network data from 'networkDynamic' objects as movies, interactive animations, or other representations of changing relational structures and attributes.

waffle — by Bob Rudis, 2 years ago

Create Waffle Chart Visualizations

Square pie charts (a.k.a. waffle charts) can be used to communicate parts of a whole for categorical quantities. To emulate the percentage view of a pie chart, a 10x10 grid should be used with each square representing 1% of the total. Modern uses of waffle charts do not necessarily adhere to this rule and can be created with a grid of any rectangular shape. Best practices suggest keeping the number of categories small, just as should be done when creating pie charts. Tools are provided to create waffle charts as well as stitch them together, and to use glyphs for making isotype pictograms.

qqtest — by Wayne Oldford, 6 years ago

Self Calibrating Quantile-Quantile Plots for Visual Testing

Provides the function qqtest which incorporates uncertainty in its qqplot display(s) so that the user might have a better sense of the evidence against the specified distributional hypothesis. qqtest draws a quantile quantile plot for visually assessing whether the data come from a test distribution that has been defined in one of many ways. The vertical axis plots the data quantiles, the horizontal those of a test distribution. The default behaviour generates 1000 samples from the test distribution and overlays the plot with shaded pointwise interval estimates for the ordered quantiles from the test distribution. A small number of independently generated exemplar quantile plots can also be overlaid. Both the interval estimates and the exemplars provide different comparative information to assess the evidence provided by the qqplot for or against the hypothesis that the data come from the test distribution (default is normal or gaussian). Finally, a visual test of significance (a lineup plot) can also be displayed to test the null hypothesis that the data come from the test distribution.

ggetho — by Quentin Geissmann, 3 years ago

Visualisation of High-Throughput Behavioural (i.e. Ethomics) Data

Extension of 'ggplot2' providing layers, scales and preprocessing functions useful to represent behavioural variables that are recorded over multiple animals and days. This package is part of the 'rethomics' framework < https://rethomics.github.io/>.