Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1055 packages in 0.40 seconds

googleCloudStorageR — by Mark Edmondson, 4 years ago

Interface with Google Cloud Storage API

Interact with Google Cloud Storage < https://cloud.google.com/storage/> API in R. Part of the 'cloudyr' < https://cloudyr.github.io/> project.

mgsub — by Mark Ewing, 5 years ago

Safe, Multiple, Simultaneous String Substitution

Designed to enable simultaneous substitution in strings in a safe fashion. Safe means it does not rely on placeholders (which can cause errors in same length matches).

spatstat.core — by Adrian Baddeley, 4 years ago

Core Functionality of the 'spatstat' Family

Functionality for data analysis and modelling of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

randtoolbox — by Christophe Dutang, a year ago

Toolbox for Pseudo and Quasi Random Number Generation and Random Generator Tests

Provides (1) pseudo random generators - general linear congruential generators, multiple recursive generators and generalized feedback shift register (SF-Mersenne Twister algorithm () and WELL () generators); (2) quasi random generators - the Torus algorithm, the Sobol sequence, the Halton sequence (including the Van der Corput sequence) and (3) some generator tests - the gap test, the serial test, the poker test, see, e.g., Gentle (2003) . Take a look at the Distribution task view of types and tests of random number generators. The package can be provided without the 'rngWELL' dependency on demand. Package in Memoriam of Diethelm and Barbara Wuertz.

dagitty — by Johannes Textor, 2 years ago

Graphical Analysis of Structural Causal Models

A port of the web-based software 'DAGitty', available at < https://dagitty.net>, for analyzing structural causal models (also known as directed acyclic graphs or DAGs). This package computes covariate adjustment sets for estimating causal effects, enumerates instrumental variables, derives testable implications (d-separation and vanishing tetrads), generates equivalent models, and includes a simple facility for data simulation.

raster — by Robert J. Hijmans, 10 months ago

Geographic Data Analysis and Modeling

Reading, writing, manipulating, analyzing and modeling of spatial data. This package has been superseded by the "terra" package < https://CRAN.R-project.org/package=terra>.

phylopath — by Wouter van der Bijl, 5 months ago

Perform Phylogenetic Path Analysis

A comprehensive and easy to use R implementation of confirmatory phylogenetic path analysis as described by Von Hardenberg and Gonzalez-Voyer (2012) .

bain — by Caspar J van Lissa, 2 years ago

Bayes Factors for Informative Hypotheses

Computes approximated adjusted fractional Bayes factors for equality, inequality, and about equality constrained hypotheses. For a tutorial on this method, see Hoijtink, Mulder, van Lissa, & Gu, (2019) . For applications in structural equation modeling, see: Van Lissa, Gu, Mulder, Rosseel, Van Zundert, & Hoijtink, (2021) . For the statistical underpinnings, see Gu, Mulder, and Hoijtink (2018) ; Hoijtink, Gu, & Mulder, J. (2019) ; Hoijtink, Gu, Mulder, & Rosseel, (2019) .

haldensify — by Nima Hejazi, 5 months ago

Highly Adaptive Lasso Conditional Density Estimation

An algorithm for flexible conditional density estimation based on application of pooled hazard regression to an artificial repeated measures dataset constructed by discretizing the support of the outcome variable. To facilitate flexible estimation of the conditional density, the highly adaptive lasso, a non-parametric regression function shown to estimate cadlag (RCLL) functions at a suitably fast convergence rate, is used. The use of pooled hazards regression for conditional density estimation as implemented here was first described for by Díaz and van der Laan (2011) . Building on the conditional density estimation utilities, non-parametric inverse probability weighted (IPW) estimators of the causal effects of additive modified treatment policies are implemented, using conditional density estimation to estimate the generalized propensity score. Non-parametric IPW estimators based on this can be coupled with undersmoothing of the generalized propensity score estimator to attain the semi-parametric efficiency bound (per Hejazi, Díaz, and van der Laan ).

gdistance — by Andrew Marx, 4 months ago

Distances and Routes on Geographical Grids

Provides classes and functions to calculate various distance measures and routes in heterogeneous geographic spaces represented as grids. The package implements measures to model dispersal histories first presented by van Etten and Hijmans (2010) . Least-cost distances as well as more complex distances based on (constrained) random walks can be calculated. The distances implemented in the package are used in geographical genetics, accessibility indicators, and may also have applications in other fields of geospatial analysis.