Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1230 packages in 0.02 seconds

fda.usc — by Manuel Oviedo de la Fuente, 8 months ago

Functional Data Analysis and Utilities for Statistical Computing

Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

microeco — by Chi Liu, 2 months ago

Microbial Community Ecology Data Analysis

A series of statistical and plotting approaches in microbial community ecology based on the R6 class. The classes are designed for data preprocessing, taxa abundance plotting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model analysis, network analysis, machine learning, environmental data analysis and functional analysis.

S7 — by Hadley Wickham, 8 months ago

An Object Oriented System Meant to Become a Successor to S3 and S4

A new object oriented programming system designed to be a successor to S3 and S4. It includes formal class, generic, and method specification, and a limited form of multiple dispatch. It has been designed and implemented collaboratively by the R Consortium Object-Oriented Programming Working Group, which includes representatives from R-Core, 'Bioconductor', 'Posit'/'tidyverse', and the wider R community.

mvoutlier — by P. Filzmoser, 4 years ago

Multivariate Outlier Detection Based on Robust Methods

Various methods for multivariate outlier detection: arw, a Mahalanobis-type method with an adaptive outlier cutoff value; locout, a method incorporating local neighborhood; pcout, a method for high-dimensional data; mvoutlier.CoDa, a method for compositional data. References are provided in the corresponding help files.

dbscan — by Michael Hahsler, 5 months ago

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Related Algorithms

A fast reimplementation of several density-based algorithms of the DBSCAN family. Includes the clustering algorithms DBSCAN (density-based spatial clustering of applications with noise) and HDBSCAN (hierarchical DBSCAN), the ordering algorithm OPTICS (ordering points to identify the clustering structure), shared nearest neighbor clustering, and the outlier detection algorithms LOF (local outlier factor) and GLOSH (global-local outlier score from hierarchies). The implementations use the kd-tree data structure (from library ANN) for faster k-nearest neighbor search. An R interface to fast kNN and fixed-radius NN search is also provided. Hahsler, Piekenbrock and Doran (2019) .

BiodiversityR — by Roeland Kindt, 3 months ago

Package for Community Ecology and Suitability Analysis

Graphical User Interface (via the R-Commander) and utility functions (often based on the vegan package) for statistical analysis of biodiversity and ecological communities, including species accumulation curves, diversity indices, Renyi profiles, GLMs for analysis of species abundance and presence-absence, distance matrices, Mantel tests, and cluster, constrained and unconstrained ordination analysis. A book on biodiversity and community ecology analysis is available for free download from the website. In 2012, methods for (ensemble) suitability modelling and mapping were expanded in the package.

NHSRwaitinglist — by Chris Mainey, 2 months ago

Waiting List Metrics Using Queuing Theory

Waiting list management using queuing theory to analyse, predict and manage queues, based on the approach described in Fong et al. (2022) . Aimed at UK National Health Service (NHS) applications, waiting list summary statistics, target-value calculations, waiting list simulation, and scheduling functions are included.

Rfast — by Manos Papadakis, 4 months ago

A Collection of Efficient and Extremely Fast R Functions

A collection of fast (utility) functions for data analysis. Column and row wise means, medians, variances, minimums, maximums, many t, F and G-square tests, many regressions (normal, logistic, Poisson), are some of the many fast functions. References: a) Tsagris M., Papadakis M. (2018). Taking R to its limits: 70+ tips. PeerJ Preprints 6:e26605v1 . b) Tsagris M. and Papadakis M. (2018). Forward regression in R: from the extreme slow to the extreme fast. Journal of Data Science, 16(4): 771--780. . c) Chatzipantsiou C., Dimitriadis M., Papadakis M. and Tsagris M. (2020). Extremely Efficient Permutation and Bootstrap Hypothesis Tests Using Hypothesis Tests Using R. Journal of Modern Applied Statistical Methods, 18(2), eP2898. . d) Tsagris M., Papadakis M., Alenazi A. and Alzeley O. (2024). Computationally Efficient Outlier Detection for High-Dimensional Data Using the MDP Algorithm. Computation, 12(9): 185. . e) Tsagris M. and Papadakis M. (2025). Fast and light-weight energy statistics using the R package Rfast. .

fortunes — by Achim Zeileis, 9 years ago

R Fortunes

A collection of fortunes from the R community.

isotree — by David Cortes, 6 months ago

Isolation-Based Outlier Detection

Fast and multi-threaded implementation of isolation forest (Liu, Ting, Zhou (2008) ), extended isolation forest (Hariri, Kind, Brunner (2018) ), SCiForest (Liu, Ting, Zhou (2010) ), fair-cut forest (Cortes (2021) ), robust random-cut forest (Guha, Mishra, Roy, Schrijvers (2016) < http://proceedings.mlr.press/v48/guha16.html>), and customizable variations of them, for isolation-based outlier detection, clustered outlier detection, distance or similarity approximation (Cortes (2019) ), isolation kernel calculation (Ting, Zhu, Zhou (2018) ), and imputation of missing values (Cortes (2019) ), based on random or guided decision tree splitting, and providing different metrics for scoring anomalies based on isolation depth or density (Cortes (2021) ). Provides simple heuristics for fitting the model to categorical columns and handling missing data, and offers options for varying between random and guided splits, and for using different splitting criteria.