Found 52 packages in 0.05 seconds

S3 Infrastructure for Regular and Irregular Time Series (Z's Ordered Observations)

An S3 class with methods for totally ordered indexed observations. It is particularly aimed at irregular time series of numeric vectors/matrices and factors. zoo's key design goals are independence of a particular index/date/time class and consistency with ts and base R by providing methods to extend standard generics.

Color Space Manipulation

Carries out mapping between assorted color spaces including RGB, HSV, HLS, CIEXYZ, CIELUV, HCL (polar CIELUV), CIELAB and polar CIELAB. Qualitative, sequential, and diverging color palettes based on HCL colors are provided along with an interactive palette picker (with either a Tcl/Tk or a shiny GUI).

Testing Linear Regression Models

A collection of tests, data sets, and examples for diagnostic checking in linear regression models. Furthermore, some generic tools for inference in parametric models are provided.

Extended Model Formulas

Infrastructure for extended formulas with multiple parts on the
right-hand side and/or multiple responses on the left-hand side
(see

Robust Covariance Matrix Estimators

Model-robust standard error estimators for cross-sectional, time series, clustered, panel, and longitudinal data.

Applied Econometrics with R

Functions, data sets, examples, demos, and vignettes for the book Christian Kleiber and Achim Zeileis (2008), Applied Econometrics with R, Springer-Verlag, New York. ISBN 978-0-387-77316-2. (See the vignette "AER" for a package overview.)

Testing, Monitoring, and Dating Structural Changes

Testing, monitoring and dating structural changes in (linear) regression models. strucchange features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g., CUSUM, MOSUM, recursive/moving estimates) and F statistics, respectively. It is possible to monitor incoming data online using fluctuation processes. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals. Emphasis is always given to methods for visualizing the data.

Beta Regression

Beta regression for modeling beta-distributed dependent variables, e.g., rates and proportions. In addition to maximum likelihood regression (for both mean and precision of a beta-distributed response), bias-corrected and bias-reduced estimation as well as finite mixture models and recursive partitioning for beta regressions are provided.

Measuring Inequality, Concentration, and Poverty

Inequality, concentration, and poverty measures. Lorenz curves (empirical and theoretical).

Dynamic Linear Regression

Dynamic linear models and time series regression.