Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 81 packages in 0.02 seconds

future — by Henrik Bengtsson, 2 months ago

Unified Parallel and Distributed Processing in R for Everyone

The purpose of this package is to provide a lightweight and unified Future API for sequential and parallel processing of R expression via futures. The simplest way to evaluate an expression in parallel is to use `x %<-% { expression }` with `plan(multisession)`. This package implements sequential, multicore, multisession, and cluster futures. With these, R expressions can be evaluated on the local machine, in parallel a set of local machines, or distributed on a mix of local and remote machines. Extensions to this package implement additional backends for processing futures via compute cluster schedulers, etc. Because of its unified API, there is no need to modify any code in order switch from sequential on the local machine to, say, distributed processing on a remote compute cluster. Another strength of this package is that global variables and functions are automatically identified and exported as needed, making it straightforward to tweak existing code to make use of futures.

matrixStats — by Henrik Bengtsson, 2 months ago

Functions that Apply to Rows and Columns of Matrices (and to Vectors)

High-performing functions operating on rows and columns of matrices, e.g. col / rowMedians(), col / rowRanks(), and col / rowSds(). Functions optimized per data type and for subsetted calculations such that both memory usage and processing time is minimized. There are also optimized vector-based methods, e.g. binMeans(), madDiff() and weightedMedian().

R.utils — by Henrik Bengtsson, 3 months ago

Various Programming Utilities

Utility functions useful when programming and developing R packages.

future.apply — by Henrik Bengtsson, 2 months ago

Apply Function to Elements in Parallel using Futures

Implementations of apply(), by(), eapply(), lapply(), Map(), .mapply(), mapply(), replicate(), sapply(), tapply(), and vapply() that can be resolved using any future-supported backend, e.g. parallel on the local machine or distributed on a compute cluster. These future_*apply() functions come with the same pros and cons as the corresponding base-R *apply() functions but with the additional feature of being able to be processed via the future framework.

progressr — by Henrik Bengtsson, 6 months ago

An Inclusive, Unifying API for Progress Updates

A minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates, e.g. in the terminal using utils::txtProgressBar(), cli::cli_progress_bar(), in a graphical user interface using utils::winProgressBar(), tcltk::tkProgressBar() or shiny::withProgress(), via the speakers using beepr::beep(), or on a file system via the size of a file. Anyone can add additional, customized, progression handlers. The 'progressr' package uses R's condition framework for signaling progress updated. Because of this, progress can be reported from almost anywhere in R, e.g. from classical for and while loops, from map-reduce API:s like the lapply() family of functions, 'purrr', 'plyr', and 'foreach'. It will also work with parallel processing via the 'future' framework, e.g. future.apply::future_lapply(), furrr::future_map(), and 'foreach' with 'doFuture'. The package is compatible with Shiny applications.

covr — by Jim Hester, 3 months ago

Test Coverage for Packages

Track and report code coverage for your package and (optionally) upload the results to a coverage service like 'Codecov' < https://about.codecov.io> or 'Coveralls' < https://coveralls.io>. Code coverage is a measure of the amount of code being exercised by a set of tests. It is an indirect measure of test quality and completeness. This package is compatible with any testing methodology or framework and tracks coverage of both R code and compiled C/C++/FORTRAN code.

pbapply — by Peter Solymos, 8 months ago

Adding Progress Bar to '*apply' Functions

A lightweight package that adds progress bar to vectorized R functions ('*apply'). The implementation can easily be added to functions where showing the progress is useful (e.g. bootstrap). The type and style of the progress bar (with percentages or remaining time) can be set through options. Supports several parallel processing backends including future.

markdown — by Yihui Xie, 3 months ago

Render Markdown with 'commonmark'

Render Markdown to full and lightweight HTML/LaTeX documents with the 'commonmark' package. It also supports features that are missing in 'commonmark', such as raw HTML/LaTeX blocks, LaTeX math, superscripts, subscripts, footnotes, element attributes, appendices, and fenced 'Divs'. With additional JavaScript and CSS, it can also create HTML slides and articles.

digest — by Dirk Eddelbuettel, a month ago

Create Compact Hash Digests of R Objects

Implementation of a function 'digest()' for the creation of hash digests of arbitrary R objects (using the 'md5', 'sha-1', 'sha-256', 'crc32', 'xxhash', 'murmurhash', 'spookyhash', 'blake3' and 'crc32c' algorithms) permitting easy comparison of R language objects, as well as functions such as'hmac()' to create hash-based message authentication code. Please note that this package is not meant to be deployed for cryptographic purposes for which more comprehensive (and widely tested) libraries such as 'OpenSSL' should be used.

doFuture — by Henrik Bengtsson, 2 months ago

Use Foreach to Parallelize via the Future Framework

The 'future' package provides a unifying parallelization framework for R that supports many parallel and distributed backends. The 'foreach' package provides a powerful API for iterating over an R expression in parallel. The 'doFuture' package brings the best of the two together. There are two alternative ways to use this package. The recommended approach is to use 'y <- foreach(...) %dofuture% { ... }', which does not require using 'registerDoFuture()' and has many advantages over '%dopar%'. The alternative is the traditional 'foreach' approach by registering the 'foreach' adapter 'registerDoFuture()' and so that 'y <- foreach(...) %dopar% { ... }' runs in parallelizes with the 'future' framework.