Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1055 packages in 0.02 seconds

mergedblocks — by Stephanie van der Pas, a year ago

Merged Block Randomization

Package to carry out merged block randomization (Van der Pas (2019), ), a restricted randomization method designed for small clinical trials (at most 100 subjects) or trials with small strata, for example in multicentre trials. It can be used for more than two groups or unequal randomization ratios.

foreign — by R Core Team, 10 months ago

Read Data Stored by 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', 'dBase', ...

Reading and writing data stored by some versions of 'Epi Info', 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', and for reading and writing some 'dBase' files.

network — by Carter T. Butts, a year ago

Classes for Relational Data

Tools to create and modify network objects. The network class can represent a range of relational data types, and supports arbitrary vertex/edge/graph attributes.

cvAUC — by Erin LeDell, 4 years ago

Cross-Validated Area Under the ROC Curve Confidence Intervals

Tools for working with and evaluating cross-validated area under the ROC curve (AUC) estimators. The primary functions of the package are ci.cvAUC and ci.pooled.cvAUC, which report cross-validated AUC and compute confidence intervals for cross-validated AUC estimates based on influence curves for i.i.d. and pooled repeated measures data, respectively. One benefit to using influence curve based confidence intervals is that they require much less computation time than bootstrapping methods. The utility functions, AUC and cvAUC, are simple wrappers for functions from the ROCR package.

subsemble — by Erin LeDell, 4 years ago

An Ensemble Method for Combining Subset-Specific Algorithm Fits

The Subsemble algorithm is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble. The paper, "Subsemble: An ensemble method for combining subset-specific algorithm fits" is authored by Stephanie Sapp, Mark J. van der Laan & John Canny (2014) .

vegan — by Jari Oksanen, 3 months ago

Community Ecology Package

Ordination methods, diversity analysis and other functions for community and vegetation ecologists.

gsignal — by Geert van Boxtel, a year ago

Signal Processing

R implementation of the 'Octave' package 'signal', containing a variety of signal processing tools, such as signal generation and measurement, correlation and convolution, filtering, filter design, filter analysis and conversion, power spectrum analysis, system identification, decimation and sample rate change, and windowing.

NormData — by Wim Van der Elst, 2 years ago

Derivation of Regression-Based Normative Data

Normative data are often used to estimate the relative position of a raw test score in the population. This package allows for deriving regression-based normative data. It includes functions that enable the fitting of regression models for the mean and residual (or variance) structures, test the model assumptions, derive the normative data in the form of normative tables or automatic scoring sheets, and estimate confidence intervals for the norms. This package accompanies the book Van der Elst, W. (2024). Regression-based normative data for psychological assessment. A hands-on approach using R. Springer Nature.

shinyHugePlot — by Junta Tagusari, a year ago

Efficient Plotting of Large-Sized Data

A tool to plot data with a large sample size using 'shiny' and 'plotly'. Relatively small samples are obtained from the original data using a specific algorithm. The samples are updated according to a user-defined x range. Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost (2022) < https://github.com/predict-idlab/plotly-resampler>.

optmatch — by Josh Errickson, a year ago

Functions for Optimal Matching

Distance based bipartite matching using minimum cost flow, oriented to matching of treatment and control groups in observational studies ('Hansen' and 'Klopfer' 2006 ). Routines are provided to generate distances from generalised linear models (propensity score matching), formulas giving variables on which to limit matched distances, stratified or exact matching directives, or calipers, alone or in combination.