Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 193 packages in 0.03 seconds

RCSF — by Jean-Romain Roussel, 6 years ago

Airborne LiDAR Filtering Method Based on Cloth Simulation

Cloth Simulation Filter (CSF) is an airborne LiDAR (Light Detection and Ranging) ground points filtering algorithm which is based on cloth simulation. It tries to simulate the interactions between the cloth nodes and the corresponding LiDAR points, the locations of the cloth nodes can be determined to generate an approximation of the ground surface < https://www.mdpi.com/2072-4292/8/6/501/htm>.

sos — by Spencer Graves, a year ago

Search Contributed R Packages, Sort by Package

Search contributed R packages, sort by package.

blackbox — by François Rousset, 2 years ago

Black Box Optimization and Exploration of Parameter Space

Performs prediction of a response function from simulated response values, allowing black-box optimization of functions estimated with some error. Includes a simple user interface for such applications, as well as more specialized functions designed to be called by the Migraine software (Rousset and Leblois, 2012 ; Leblois et al., 2014 ; and see URL). The latter functions are used for prediction of likelihood surfaces and implied likelihood ratio confidence intervals, and for exploration of predictor space of the surface. Prediction of the response is based on ordinary Kriging (with residual error) of the input. Estimation of smoothing parameters is performed by generalized cross-validation.

spatstat.explore — by Adrian Baddeley, a month ago

Exploratory Data Analysis for the 'spatstat' Family

Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.

Mestim — by François Grolleau, 3 years ago

Computes the Variance-Covariance Matrix of Multidimensional Parameters Using M-Estimation

Provides a flexible framework for estimating the variance-covariance matrix of estimated parameters. Estimation relies on unbiased estimating functions to compute the empirical sandwich variance. (i.e., M-estimation in the vein of Tsiatis et al. (2019) .

genepop — by François Rousset, 2 months ago

Population Genetic Data Analysis Using Genepop

Makes the Genepop software available in R. This software implements a mixture of traditional population genetic methods and some more focused developments: it computes exact tests for Hardy-Weinberg equilibrium, for population differentiation and for genotypic disequilibrium among pairs of loci; it computes estimates of F-statistics, null allele frequencies, allele size-based statistics for microsatellites, etc.; and it performs analyses of isolation by distance from pairwise comparisons of individuals or population samples.

SensoMineR — by Francois Husson, 3 months ago

Sensory Data Analysis

Statistical Methods to Analyse Sensory Data. SensoMineR: A package for sensory data analysis. S. Le and F. Husson (2008).

DescTools — by Andri Signorell, 7 months ago

Tools for Descriptive Statistics

A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently describing data. The author's intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel. Many of the included functions can be found scattered in other packages and other sources written partly by Titans of R. The reason for collecting them here, was primarily to have them consolidated in ONE instead of dozens of packages (which themselves might depend on other packages which are not needed at all), and to provide a common and consistent interface as far as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style guides were used as naming rules (in absence of convincing alternatives). The 'BigCamelCase' style was consequently applied to functions borrowed from contributed R packages as well.

MuFiMeshGP — by Romain Boutelet, 2 months ago

Multi-Fidelity Emulator for Computer Experiments with Tunable Fidelity Levels

Multi-Fidelity emulator for data from computer simulations of the same underlying system but at different input locations and fidelity level, where both the input locations and fidelity level can be continuous. Active Learning can be performed with an implementation of the Integrated Mean Square Prediction Error (IMSPE) criterion developed by Boutelet and Sung (2025, ).

ZeBook — by Francois Brun, 7 years ago

Working with Dynamic Models for Agriculture and Environment

R package accompanying the book Working with dynamic models for agriculture and environment, by Daniel Wallach (INRA), David Makowski (INRA), James W. Jones (U.of Florida), Francois Brun (ACTA). 3rd edition 2018-09-27.